CS 2750 Machine Learning Lecture 18

Clustering

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

Clustering

Groups together "similar" instances in the data sample

Basic clustering problem:

- distribute data into *k* different groups such that data points similar to each other are in the same group
- Similarity between data points is defined in terms of some distance metric (can be chosen)

Clustering is useful for:

• Similarity/Dissimilarity analysis

Analyze what data points in the sample are close to each other

• Dimensionality reduction

High dimensional data replaced with a group (cluster) label

- We see data points and want to partition them into groups
- Which data points belong together?

- We see data points and want to partition them into the groups
- Which data points belong together?

CS 2750 Machine Learning

- We see data points and want to partition them into the groups
- Requires a distance measure to tell us what points are close to each other and are in the same group

CS 2750 Machine Learning

- A set of patient cases
- We want to partition them into groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	Μ	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

- A set of patient cases
- We want to partition them into the groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	Μ	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

How to design the distance metric to quantify similarities?

Clustering example. Distance measures.

In general, one can choose an arbitrary distance measure.

Properties of distance metrics:

Assume 2 data entries *a*, *b*

Positiveness:	$d(a,b) \ge 0$
Symmetry:	d(a,b) = d(b,a)
Identity:	d(a,a) = 0

Assume pure real-valued data-points:

12	34.5	78.5	89.2	19.2
23.5	41.4	66.3	78.8	8.9
33.6	36.7	78.3	90.3	21.4
17.2	30.1	71.6	88.5	12.5

What distance metric to use?

Assume pure real-valued data-points:

12	34.5	78.5	89.2	19.2
23.5	41.4	66.3	78.8	8.9
33.6	36.7	78.3	90.3	21.4
17.2	30.1	71.6	88.5	12.5

What distance metric to use?

Euclidian: works for an arbitrary k-dimensional space

$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

Assume pure real-valued data-points:

12	34.5	78.5	89.2	19.2
23.5	41.4	66.3	78.8	8.9
33.6	36.7	78.3	90.3	21.4
17.2	30.1	71.6	88.5	12.5

What distance metric to use?

Squared Euclidian: works for an arbitrary k-dimensional space

$$d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$$

Assume pure real-valued data-points:

12	34.5	78.5	89.2	19.2
23.5	41.4	66.3	78.8	8.9
33.6	36.7	78.3	90.3	21.4
17.2	30.1	71.6	88.5	12.5

Manhattan distance:

works for an arbitrary k-dimensional space

$$d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$$

Etc. ..

Generalized distance metric:

 Γ^{-1}

 $d^{2}(\mathbf{a},\mathbf{b}) = (\mathbf{a}-\mathbf{b})\boldsymbol{\Gamma}^{-1}(\mathbf{a}-\mathbf{b})^{T}$

 Γ semi-definite positive matrix

- Γ^{-1} is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric.
- If $\Gamma = I$ we get squared Euclidean

 $\Gamma = \Sigma$ (covariance matrix) – we get the Mahalanobis distance that takes into account correlations among attributes

Assume pure binary values data:

. . .

What distance metric to use?

Assume pure binary values data:

What distance metric to use?

Hamming distance: The number of bits that need to be changed to make the entries the same

How about Euclidean distance?

Assume pure categorical data:

What distance metric to use?

Hamming distance: The number of number of values that need to be changed to make them the same

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	Μ	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

What distance metric to use?

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	Μ	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and Hamming distances for subsets of attributes

Clustering

Clustering is useful for:

• Similarity/Dissimilarity analysis

Analyze what data points in the sample are close to each other

• Dimensionality reduction

High dimensional data replaced with a group (cluster) label

• **Data reduction:** Replaces many datapoints with the point representing the group mean

Problems:

- Pick the correct similarity measure (problem specific)
- Choose the correct number of groups
 - Many clustering algorithms require us to provide the number of groups ahead of time

Clustering algorithms

- K-means algorithm
 - suitable only when data points have continuous values; groups are defined in terms of cluster centers (also called means). Refinement of the method to categorical values: K-medoids
- Probabilistic methods (with EM)
 - Latent variable models: class (cluster) is represented by a latent (hidden) variable value
 - Every point goes to the class with the highest posterior
 - **Examples:** mixture of Gaussians, Naïve Bayes with a hidden class
- Hierarchical methods
 - Agglomerative
 - Divisive

K-means

K-Means algorithm:

Initialize randomly *k* values of means (centers) Repeat two steps until no change in the means:

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Stop when no change in the means

Properties:

• Minimizes the sum of squared center-point distances for all clusters $\sum_{k} \sum_{k} \sum_{k} ||_{k} = ||^{2}$

$$\arg\min_{S} \sum_{i=1}^{n} \sum_{x_j \in S_i} \|x_j - u_i\|^2$$

• The algorithm always converges (to the local optima).

K-means algorithm

• **Properties:**

- converges to centers minimizing the sum of squared centerpoint distances (still local optima)
- The result is sensitive to the initial means' values
- Advantages:
 - Simplicity
 - Generality can work for more than one distance measure
- Drawbacks:
 - Can perform poorly with overlapping regions
 - Lack of robustness to outliers
 - Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - k-medoid algorithm used for discrete data

Probabilistic (EM-based) algorithms

- Latent variable models
 Examples: Naïve Bayes with hidden class
 Mixture of Gaussians
- Partitioning:
 - the data point belongs to the class with the highest posterior
- Advantages:
 - Good performance on overlapping regions
 - Robustness to outliers
 - Data attributes can have different types of values
- Drawbacks:
 - EM is computationally expensive and can take time to converge
 - Density model should be given in advance

Hierarchical clustering.

Uses an arbitrary similarity/dissimilarity measure. Typical similarity measures d(a,b):

Pure real-valued data-points:

– Euclidean, Manhattan, Minkowski distances

Pure binary values data:

- Hamming distance Number of matching values
- the same as Euclidean

Pure categorical data:

Number of matching values

Combination of real-valued and categorical attributes

– Weighted, or Euclidean

Hierarchical clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- **Stop the greedy construction** when some criterion is satisfied
 - E.g. fixed number of clusters

Cluster merging

- Construction of clusters through greedy agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Merge clusters based on cluster (or linkage) distances.
 Defined in terms of point distances. Examples:

Min distance
$$d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} d(p, q)$$

Max distance
$$d_{\max}(C_i, C_j) = \max_{p \in C_i, q \in C_j} d(p, q)$$

Mean distance
$$d_{mean}(C_i, C_j) = \left| d \left(\frac{1}{|C_i|} \sum_i p_i; \frac{1}{|C_j|} \sum_j q_j \right) \right|$$

Hierarchical clustering example

Hierarchical clustering example

CS 2750 Machine Learning

Hierarchical clustering

• Advantage:

- Smaller computational cost; avoids scanning all possible clusterings
- Disadvantage:
 - Greedy choice fixes the order in which clusters are merged; cannot be repaired
- Partial solution:
 - combine hierarchical clustering with iterative algorithms like k-means

Other clustering methods

- Spectral clustering
 - Uses similarity matrix
- Multidimensional scaling
 - techniques often used in data visualization for exploring similarities or dissimilarities in data.