CS 2750 Machine Learning
 Lecture 12b

Bayesian belief networks

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

$$
D_{i}=\mathbf{x}_{i} \quad \text { a vector of attribute values }
$$

Attributes:

- modeled by random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ with:
- Continuous values
- Discrete values
E.g. blood pressure with numerical values or chest pain with discrete values
[no-pain, mild, moderate, strong]
Underlying true probability distribution:

$$
p(\mathbf{X})
$$

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

$$
D_{i}=\mathbf{x}_{i} \quad \text { a vector of attribute values }
$$

Objective: try to estimate the underlying true probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(X)$)

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in \boldsymbol{X} with parameters Θ :

$$
\hat{p}(\mathbf{X} \mid \Theta)
$$

- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

Objective: find the parameters Θ that explain best the observed data

Parameter estimation

- Maximum likelihood (ML) maximize $p(D \mid \Theta, \xi)$
- yields: one set of parameters $\Theta_{M L}$
- the target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M L}\right)
$$

- Bayesian parameter estimation
- uses the posterior distribution over possible parameters

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
$$

- Yields: all possible settings of Θ (and their "weights")
- The target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid D)=\int_{\boldsymbol{\Theta}} p(X \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta} \mid D, \xi) d \boldsymbol{\Theta}
$$

Parameter estimation

Other possible criteria:

- Maximum a posteriori probability (MAP)

maximize $p(\boldsymbol{\Theta} \mid D, \xi) \quad$ (mode of the posterior)

- Yields: one set of parameters $\boldsymbol{\Theta}_{M A P}$
- Approximation:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M A P}\right)
$$

- Expected value of the parameter

$$
\hat{\boldsymbol{\Theta}}=E(\boldsymbol{\Theta}) \quad \text { (mean of the posterior) }
$$

- Expectation taken with regard to posterior $p(\boldsymbol{\Theta} \mid D, \xi)$
- Yields: one set of parameters
- Approximation:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \hat{\boldsymbol{\Theta}})
$$

Density estimation

- So far we have covered density estimation for "simple" distribution models:
- Bernoulli
- Binomial
- Multinomial
- Gaussian
- Poisson

But what if:

- The dimension of $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ is large
- Example: patient data
- Compact parametric distributions do not seem to fit the data
- E.g.: multivariate Gaussian may not fit
- We have only a "small" number of examples to do accurate parameter estimates

How to learn complex distributions

How to learn complex multivariate distributions $\hat{p}(\mathbf{X})$ with large number of variables?

One solution:

- Decompose the distribution using conditional independence relations
- Decompose the parameter estimation problem to a set of smaller parameter estimation tasks

Decomposition of distributions under conditional independence assumption is the main idea behind Bayesian belief networks

Example

Problem description:

- Disease: pneumonia
- Patient symptoms (findings, lab tests):
- Fever, Cough, Paleness, WBC (white blood cells) count, Chest pain, etc.
Representation of a patient case:
- Symptoms and disease are represented as random variables

Our objectives:

- Describe a multivariate distribution representing the relations between symptoms and disease
- Design of inference and learning procedures for the multivariate model

Modeling uncertainty with probabilities

- Full joint distribution:
- Assume $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ are all random variables that define the domain
- Full joint: $P(\mathbf{X})$ or $P\left(X_{1}, X_{2}, \ldots, X_{d}\right)$

Full joint it is sufficient to do any type of probabilistic inference:

- Computation of joint probabilities for sets of variables

$$
P\left(X_{1}, X_{2}, X_{3}\right) \quad P\left(X_{1}, X_{10}\right)
$$

- Computation of conditional probabilities

$$
P\left(X_{1} \mid X_{2}=\text { True }, X_{3}=\text { False }\right)
$$

Marginalization

Joint probability distribution (for a set variables)

- Defines probabilities for all possible assignments to values of variables in the set
$\mathbf{P}($ pneumonia,$W B C$ count $) \quad 2 \times 3$ table

		WBCcount			
		high	normal		
Pneumonia	low				
	True	0.0008	0.0001		
0.0 .0001					
	False	0.0042	0.9929		
		0.005	0.993		
			0.002		

\mathbf{P} (Pneumonia)
$\mathbf{P}($ WBCcount $)$
Marginalization (summing of rows, or columns)

- summing out variables

Variable independence

- The joint distribution over a subset of variables can be always computed from the joint distribution through marginalization
- Not the other way around !!!
- Only exception: when variables are independent

$$
P(A, B)=P(A) P(B)
$$

Conditional probability

Conditional probability :

- Probability of A given B

$$
P(A \mid B)=\frac{P(A, B)}{P(B)}
$$

- Conditional probability is defined in terms of joint probabilities
- Joint probabilities can be expressed in terms of conditional probabilities

$$
P(A, B)=P(A \mid B) P(B) \quad \text { (product rule) }
$$

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)=\prod_{i=1}^{n} P\left(X_{i} \mid X_{1,} \ldots X_{i-1}\right) \text { (chain rule) }
$$

- Conditional probability - is useful for various probabilistic inferences
$P($ Pneumonia $=$ True \mid Fever $=$ True,$W B C c o u n t=$ high, Cough $=$ True $)$

Inference

Any query can be computed from the full joint distribution !!!

- Joint over a subset of variables is obtained through marginalization

$$
P(A=a, C=c)=\sum_{i} \sum_{j} P\left(A=a, B=b_{i}, C=c, D=d_{j}\right)
$$

- Conditional probability over a set of variables, given other variables' values is obtained through marginalization and definition of conditionals

$$
\begin{aligned}
P(D=d \mid A=a, C=c) & =\frac{P(A=a, C=c, D=d)}{P(A=a, C=c)} \\
& =\frac{\sum_{i} P\left(A=a, B=b_{i}, C=c, D=d\right)}{\sum_{i} \sum_{j} P\left(A=a, B=b_{i}, C=c, D=d_{j}\right)}
\end{aligned}
$$

Inference

- Any joint probability can be expressed as a product of conditionals via the chain rule.

$$
\begin{aligned}
& P\left(X_{1}, X_{2}, \ldots X_{n}\right)=P\left(X_{n} \mid X_{1,} \ldots X_{n-1}\right) P\left(X_{1, \ldots} X_{n-1}\right) \\
&= P\left(X_{n} \mid X_{\left.1, \ldots X_{n-1}\right) P\left(X_{n-1} \mid X_{1,} \ldots X_{n-2}\right) P\left(X_{1,} \ldots X_{n-2}\right)}\right. \\
&=\prod_{i=1}^{n} P\left(X_{i} \mid X_{\left.1, \ldots X_{i-1}\right)}\right.
\end{aligned}
$$

- It is often easier to define the distribution in terms of conditional probabilities:

$$
\begin{array}{ll}
- \text { E.g. } & \mathbf{P}(\text { Fever } \mid \text { Pneumonia }=T) \\
& \mathbf{P}(\text { Fever } \mid \text { Pneumonia }=F)
\end{array}
$$

Modeling uncertainty with probabilities

- Full joint distribution: joint distribution over all random variables defining the domain
- it is sufficient to represent the complete domain and to do any type of probabilistic inferences

Problems:

- Space complexity. To store full joint distribution requires to remember $O\left(\mathrm{~d}^{\mathrm{n}}\right)$ numbers.
n - number of random variables, d - number of values
- Inference complexity. To compute some queries requires .$O\left(\mathrm{~d}^{\mathrm{n}}\right)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?

Pneumonia example. Complexities.

- Space complexity.
- Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), WBCcount (3: high, normal, low), paleness (2: T,F)
- Number of assignments: $2 * 2 * 2 * 3 * 2=48$
- We need to define at least 47 probabilities.
- Time complexity.
- Assume we need to compute the probability of Pneumonia=T from the full joint

$$
P(\text { Pneumonia }=T)=
$$

$$
=\sum_{i \in T, F} \sum_{j \in T, F} \sum_{k=h, n, l} \sum_{u \in T, F} P(\text { Fever }=i, \text { Cough }=j, W B C c o u n t=k, \text { Pale }=u)
$$

- Sum over $2 * 2 * 3 * 2=24$ combinations

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of conditional and marginal independences among random variables
- A and B are independent

$$
P(A, B)=P(A) P(B)
$$

- A and B are conditionally independent given C

$$
\begin{aligned}
& P(A, B \mid C)=P(A \mid C) P(B \mid C) \\
& P(A \mid C, B)=P(A \mid C)
\end{aligned}
$$

