CS 2750 Machine Learning

 Lecture 4
Density estimation III.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Outline

Outline:

- Density estimation:
- Maximum likelihood (ML)
- Bayesian parameter estimates
- MAP
- Bernoulli distribution.
- Binomial distribution
- Multinomial distribution
- Normal distribution

- Exponential family

Exponential family

Exponential family:

- all probability mass / density functions that can be written in the exponential normal form

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} t(\mathbf{x})\right]
$$

- $\quad \boldsymbol{\eta} \quad$ a vector of natural (or canonical) parameters
- $t(\mathbf{x}) \quad$ a function referred to as a sufficient statistic
- $\quad h(\mathbf{x}) \quad$ a function of x (it is less important)
- $\quad Z(\boldsymbol{\eta}) \quad$ a normalization constant (a partition function)

$$
Z(\boldsymbol{\eta})=\int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})\right\} d \mathbf{x}
$$

- Other common form:

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} t(\mathbf{x})-A(\boldsymbol{\eta})\right] \quad \log Z(\boldsymbol{\eta})=A(\boldsymbol{\eta})
$$

Exponential family: examples

- Bernoulli distribution

$$
\begin{aligned}
\begin{aligned}
p(x \mid \pi)= & \pi^{x}(1-\pi)^{1-x} \\
& =\exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x+\log (1-\pi)\right\} \\
& =\exp \{\log (1-\pi)\} \exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x\right\}
\end{aligned} \text { ial family }
\end{aligned}
$$

- Exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} t(\mathbf{x})\right]
$$

- Parameters

$$
\begin{array}{ll}
\boldsymbol{\eta}=? & t(\mathbf{x})=? \\
Z(\boldsymbol{\eta})=? & h(\mathbf{x})=?
\end{array}
$$

Exponential family: examples

- Bernoulli distribution
- Exponential family

$$
\begin{aligned}
p(x \mid \pi)= & \pi^{x}(1-\pi)^{1-x} \\
& =\exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x+\log (1-\pi)\right\} \\
& =\exp \{\log (1-\pi)\} \exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x\right\}
\end{aligned}
$$

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} t(\mathbf{x})\right]
$$

- Parameters

$$
\begin{array}{ll}
\boldsymbol{\eta}=\log \frac{\pi}{1-\pi}\left(\text { note } \pi=\frac{1}{1+e^{-\eta}}\right) & t(\mathbf{x})=x \\
Z(\boldsymbol{\eta})=\frac{1}{1-\pi}=1+e^{\eta} & h(\mathbf{x})=1
\end{array}
$$

Exponential family: examples

- Univariate Gaussian distribution

$$
\begin{aligned}
& p(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right] \\
& \quad=\frac{1}{2 \pi} \exp \left(-\frac{\mu}{2 \sigma^{2}}-\log \sigma\right) \exp \left\{\frac{\mu}{\sigma^{2}} x-\frac{1}{2 \sigma^{2}} x^{2}\right\}
\end{aligned}
$$

- Exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(x) \exp \left[\eta^{T} t(x)\right]
$$

- Parameters

$$
\begin{array}{ll}
\boldsymbol{\eta}=? & t(\mathbf{x})=? \\
Z(\boldsymbol{\eta})=? & h(\mathbf{x})=?
\end{array}
$$

Exponential family: examples

- Univariate Gaussian distribution

$$
\begin{aligned}
& p(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} \exp \left[-\frac{1}{2 \sigma^{2}}(x-\mu)^{2}\right] \\
& \quad=\frac{1}{2 \pi} \exp \left(-\frac{\mu}{2 \sigma^{2}}-\log \sigma\right) \exp \left\{\frac{\mu}{\sigma^{2}} x-\frac{1}{2 \sigma^{2}} x^{2}\right\}
\end{aligned}
$$

- Exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(x) \exp \left[\eta^{T} t(x)\right]
$$

- Parameters

$$
\begin{aligned}
& \text { arameters } \quad \boldsymbol{\eta}=\left[\begin{array}{c}
\mu / 2 \sigma^{2} \\
-1 / 2 \sigma^{2}
\end{array}\right] \quad t(\mathbf{x})=\left[\begin{array}{c}
x \\
x^{2}
\end{array}\right] \\
& Z(\boldsymbol{\eta})=\exp \left\{\frac{\mu}{2 \sigma^{2}}+\log \sigma\right\}=\exp \left\{-\frac{\eta_{1}^{2}}{4 \eta_{2}}-\frac{1}{2} \log \left(-2 \eta_{2}\right)\right\} \\
& h(\mathbf{x})=1 / \sqrt{2 \pi}
\end{aligned}
$$

Exponential family

- For iid samples, the likelihood of data is

$$
\begin{aligned}
P(D \mid \boldsymbol{\eta})=\prod_{i=1}^{n} p & \left(\mathbf{x}_{i} \mid \boldsymbol{\eta}\right)=\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right) \exp \left[\boldsymbol{\eta}^{T} t\left(\mathbf{x}_{i}\right)-A(\boldsymbol{\eta})\right] \\
& =\left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right] \exp \left[\sum_{i=1}^{n} \boldsymbol{\eta}^{T} t\left(\mathbf{x}_{i}\right)-A(\boldsymbol{\eta})\right] \\
= & {\left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right] \exp \left[\boldsymbol{\eta}^{T}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)-n A(\boldsymbol{\eta})\right] }
\end{aligned}
$$

- Important:

- the dimensionality of the sufficient statistic remains the same for different sample sizes (that is, different number of examples in D)

Exponential family

- The \log likelihood of data is

$$
\begin{aligned}
l(D, \boldsymbol{\eta}) & =\log \left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right] \exp \left[\boldsymbol{\eta}^{T}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)-n A(\boldsymbol{\eta})\right] \\
& =\log \left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right]+\left[\boldsymbol{\eta}^{T}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)-n A(\boldsymbol{\eta})\right]
\end{aligned}
$$

- Optimizing the loglikelihood

$$
\nabla_{\boldsymbol{\eta}} l(D, \boldsymbol{\eta})=\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)-n \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\mathbf{0}
$$

- For the ML estimate it must hold

$$
\nabla_{\mathfrak{\eta}} A(\boldsymbol{\eta})=\frac{1}{n}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)
$$

Exponential family

- Rewritting the gradient:

$$
\begin{aligned}
& \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\nabla_{\boldsymbol{\eta}} \log Z(\boldsymbol{\eta})=\nabla_{\boldsymbol{\eta}} \log \int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})\right\} d \mathbf{x} \\
& \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\frac{\int t(\mathbf{x}) h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})\right\} d \mathbf{x}}{\int h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})\right\} d \mathbf{x}} \\
& \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=\int t(\mathbf{x}) h(\mathbf{x}) \exp \left\{\boldsymbol{\eta}^{T} t(\mathbf{x})-A(\boldsymbol{\eta})\right\} d \mathbf{x} \\
& \nabla_{\boldsymbol{\eta}} A(\boldsymbol{\eta})=E(t(\mathbf{x}))
\end{aligned}
$$

- Result: $E(t(\mathbf{x}))=\frac{1}{n}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)$
- For the ML estimate the parameters $\boldsymbol{\eta}$ should be adjusted such that the expectation of the statistic $t(x)$ is equal to the observed sample statistics

Moments of the distribution

- For the exponential family
- The k-th moment of the statistic corresponds to the k-th derivative of $A(\boldsymbol{\eta})$
- If x is a component of $t(x)$ then we get the moments of the distribution by differentiating its corresponding natural parameter
- Example: Bernoulli $p(x \mid \pi)=\exp \left\{\log \left(\frac{\pi}{1-\pi}\right) x+\log (1-\pi)\right\}$ $A(\boldsymbol{\eta})=\log \frac{1}{1-\pi}=\log \left(1+e^{\eta}\right)$
- Derivatives:

$$
\begin{aligned}
& \frac{\partial A(\boldsymbol{\eta})}{\partial \eta}=\frac{\partial}{\partial \eta} \log \left(1+e^{\eta}\right)=\frac{e^{\eta}}{\left(1+e^{\eta}\right)}=\frac{1}{\left(1+e^{-\eta}\right)}=\pi \\
& \frac{\partial A(\boldsymbol{\eta})}{\partial \eta^{2}}=\frac{\partial}{\partial \eta} \frac{1}{\left(1+e^{-\eta}\right)}=\pi(1-\pi) \\
& \operatorname{Cs} 2750 \text { Machine Learning }
\end{aligned}
$$

Conjugate priors

For any member of the exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} \mathbf{t}(\mathbf{x})\right]
$$

there exists a prior:

$$
p(\boldsymbol{\eta} \mid \boldsymbol{\chi}, v)=u(\boldsymbol{\chi}, v) g(\boldsymbol{\eta})^{v} \exp \left[v \boldsymbol{\eta}^{T} \boldsymbol{\chi}\right]
$$

Such that for \mathbf{n} examples, the posterior is

$$
p(\boldsymbol{\eta} \mid D, \boldsymbol{\chi}, v) \propto g(\boldsymbol{\eta})^{v+n} \exp \left[\boldsymbol{\eta}^{T}\left(\left[\sum_{i=1}^{n} \mathbf{t}\left(x_{i}\right)\right]+v \boldsymbol{\chi}\right)\right]
$$

Note that:

$$
P(D \mid \boldsymbol{\eta})=\left(\frac{1}{Z(\boldsymbol{\eta})}\right)^{n}\left[\prod_{i=1}^{n} h\left(\mathbf{x}_{i}\right)\right] \exp \left[\boldsymbol{\eta}^{T}\left(\sum_{i=1}^{n} t\left(\mathbf{x}_{i}\right)\right)\right]
$$

Conjugate priors

For any member of the exponential family

$$
f(\mathbf{x} \mid \boldsymbol{\eta})=\frac{1}{Z(\boldsymbol{\eta})} h(\mathbf{x}) \exp \left[\boldsymbol{\eta}^{T} \mathbf{t}(\mathbf{x})\right]
$$

there exists a prior:

$$
p(\boldsymbol{\eta} \mid \boldsymbol{\chi}, v)=u(\boldsymbol{\chi}, v) g(\boldsymbol{\eta})^{v} \exp \left[v \boldsymbol{\eta}^{T} \boldsymbol{\chi}\right]
$$

Such that for \mathbf{n} examples, the posterior is

$$
p(\boldsymbol{\eta} \mid D, \chi, v) \propto g(\boldsymbol{\eta})^{v+n} \exp \left[\boldsymbol{\eta}^{T}\left(\left[\sum_{i=1}^{n} \mathbf{t}\left(x_{i}\right)\right]+v \boldsymbol{\chi}\right)\right]
$$

Nonparametric Methods

- Parametric distribution models are:
- restricted to specific forms, which may not always be suitable;
- Example: modelling a multimodal distribution with a single, unimodal model.
- Nonparametric approaches:
- make few assumptions about the overall shape of the distribution being modelled.

Nonparametric Methods

Histogram methods:

partition the data space into distinct bins with widths Δ_{i} and count the number of observations, n_{i}, in each bin.

$$
p_{i}=\frac{n_{i}}{N \Delta_{i}}
$$

- Often, the same width is used for all bins, $\Delta_{i}=\Delta$.
- Δ acts as a smoothing
 parameter.

Nonparametric Methods

- Assume observations drawn from a density $\mathrm{p}(\mathrm{x})$ and consider a small region R containing x such that

$$
P=\int_{R} p(x) d x
$$

- The probability that K out of N observations lie inside R is $\operatorname{Bin}(K, N, P)$ and if N is large

$$
K \cong N P
$$

Thus

$$
\begin{aligned}
& p(x)=\frac{P}{V} \\
& p(x)=\frac{K}{N V}
\end{aligned}
$$

Nonparametric Methods: kernel methods

Kernel Density Estimation:
Fix V, estimate \mathbf{K} from the data. Let R be a hypercube centred on \mathbf{X} and define the kernel function (Parzen window)

$$
k\left(\frac{x-x_{n}}{h}\right)=\begin{array}{cc}
1 & \left|\left(x_{i}-x_{n i}\right)\right| / h \leq 1 / 2 \quad i=1, \ldots D \\
0 & \text { otherwise }
\end{array}
$$

- It follows that
- and hence $K=\sum_{n=1}^{N} k\left(\frac{x-x_{n}}{h}\right)$

$$
p(x)=\frac{1}{N} \sum_{n=1}^{N} \frac{1}{h^{D}} k\left(\frac{x-x_{n}}{h}\right)
$$

Nonparametric Methods: smooth kernels

To avoid discontinuities in $\mathrm{p}(\mathrm{x})$ because of sharp boundaries use a smooth kernel, e.g. a Gaussian

$$
\begin{aligned}
p(\mathbf{x})=\frac{1}{N} \sum_{n=1}^{N} & \frac{1}{\left(2 \pi h^{2}\right)^{D / 2}} \\
& \exp \left\{-\frac{\left\|\mathbf{x}-\mathbf{x}_{n}\right\|^{2}}{2 h^{2}}\right\}
\end{aligned}
$$

- will work.

Nonparametric Methods: kNN estimation

Nearest Neighbour Density Estimation:
fix K, estimate V from the data. Consider a hyper-sphere centred on X and let it grow to a volume, V^{*}, that includes K of the given N data points. Then

$$
p(\mathbf{x}) \simeq \frac{K}{N V^{\star}}
$$

Nonparametric vs Parametric Methods

Nonparametric models:

- More flexibility - no density model is needed
- But require storing the entire dataset
- and the computation is performed with all data examples.

Parametric models:

- Once fitted, only parameters need to be stored
- They are much more efficient in terms of computation
- But the model needs to be picked in advance

K-Nearest-Neighbours for Classification

- Given a data set with N_{k} data points from class C_{k} and $\sum_{k} N_{k}=N$, we have

$$
p(\mathbf{x})=\frac{K}{N V}
$$

- and correspondingly

$$
p\left(\mathbf{x} \mid \mathcal{C}_{k}\right)=\frac{K_{k}}{N_{k} V}
$$

- Since $p\left(\mathcal{C}_{k}\right)=N_{k} / N$, Bayes' theorem gives

$$
p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)=\frac{p\left(\mathbf{x} \mid \mathcal{C}_{k}\right) p\left(\mathcal{C}_{k}\right)}{p(\mathbf{x})}=\frac{K_{k}}{K} .
$$

K-Nearest-Neighbours for Classification

