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Density estimation III.

CS 2750 Machine Learning

Outline

Outline:
• Density estimation:

– Maximum likelihood (ML)
– Bayesian parameter estimates
– MAP

• Bernoulli distribution.
• Binomial distribution
• Multinomial distribution
• Normal distribution
• Exponential family
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Exponential family
Exponential family:
• all probability  mass / density functions that can be written in the 

exponential normal form

• a vector of natural (or canonical) parameters
• a function referred to as a sufficient statistic
• a function of x (it is less important)
• a normalization constant (a partition function)

• Other common form:
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Exponential family: examples
• Bernoulli distribution

• Exponential family

• Parameters
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Exponential family: examples
• Bernoulli distribution

• Exponential family

• Parameters
(note                           )
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Exponential family: examples
• Univariate Gaussian distribution

• Exponential family

• Parameters
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Exponential family: examples
• Univariate Gaussian distribution

• Exponential family

• Parameters
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Exponential family
• For iid samples, the likelihood of data is

• Important:
– the dimensionality of the sufficient statistic remains the same 

for different sample sizes  (that is, different number of 
examples in D)
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Exponential family
• The log likelihood of data is

• Optimizing the loglikelihood

• For the ML estimate it must hold
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Exponential family
• Rewritting the gradient:

• Result:

• For the ML estimate the parameters       should be adjusted 
such that the expectation of the statistic t(x) is equal to the 
observed sample statistics
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Moments of the distribution
• For the exponential family

– The k-th moment of the statistic corresponds to the k-th
derivative of

– If x is a component of t(x) then we get the moments of the 
distribution by differentiating its corresponding natural 
parameter

• Example: Bernoulli

• Derivatives:
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Conjugate priors
For any member of the exponential family

there exists a prior:

Such that for n examples, the posterior is 

Note that: 
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Conjugate priors
For any member of the exponential family

there exists a prior:

Such that for n examples, the posterior is 

Note that: Prior corresponds to ν observations with value χ.
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Nonparametric Methods

• Parametric distribution models are:
– restricted to specific forms, which may not always be 

suitable; 
– Example: modelling a multimodal distribution with a 

single, unimodal model.
• Nonparametric approaches:

– make few assumptions about the overall shape of the 
distribution being modelled.
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Nonparametric Methods

Histogram methods:
partition the data space into 
distinct bins with widths ∆i and 
count the number of 
observations, ni, in each bin.

• Often, the same width is 
used for all bins, ∆ i = ∆.
• ∆ acts as a smoothing 
parameter.

• In a D-dimensional space, using M
bins in each dimen-sion will require 
MD bins!
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Nonparametric Methods

• Assume observations drawn 
from a density p(x) and 
consider a small region R 
containing x such that

• The probability that K out of 
N observations lie inside R 
is  Bin(K,N,P ) and if N is 
large

If the volume of R, V, is 
sufficiently small, p(x) is 
approximately constant over 
R and

Thus
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Nonparametric Methods: kernel methods

Kernel Density Estimation: 
Fix V, estimate K from the data. Let R be a hypercube 
centred on x and define the kernel function (Parzen window)

• It follows  that 

• and hence
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Nonparametric Methods: smooth kernels
To avoid discontinuities in p(x) 
because of sharp boundaries 
use a smooth kernel, e.g. a 
Gaussian

• Any kernel such that

• will work.

h acts as a smoother.
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Nonparametric Methods: kNN estimation

Nearest Neighbour Density 
Estimation:
fix K, estimate V from the 
data. Consider a hyper-sphere 
centred on x and let it grow to 
a volume, V*, that includes K
of the given N data points. 
Then

K acts as a smoother
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Nonparametric vs Parametric Methods

Nonparametric models:
• More flexibility – no density model is needed
• But require storing the entire dataset
• and the computation is performed with all data examples.

Parametric models:
• Once fitted, only parameters need to be stored
• They are much more efficient in terms of computation
• But the model needs to be picked in advance
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K-Nearest-Neighbours for Classification

• Given a data set with Nk data points from class Ck
and                           ,  we have

• and correspondingly

• Since                       ,  Bayes’ theorem gives
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K-Nearest-Neighbours for Classification

K = 3


