CS 2750 Machine Learning Lecture 22

Concept learning

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

CS 2750 Machine Learning

Concept Learning

Outline:

- Learning boolean functions
- Most general and most specific consistent hypothesis.
- Mitchell's version space algorithm
- Probably approximately correct (PAC) learning.
- Sample complexity for PAC.
- Vapnik-Chervonenkis (VC) dimension.
- Improved sample complexity bounds.

Learning concepts

Assume objects (examples) described in terms of attributes:

Sky	Air-Temp	Humidity	Wind	Water	Forecast	EnjoySport
Sunny	Warm	Normal	Strong	Warm	Same	yes
Rainy	Cold	Normal	Strong	Warm	Change	no

Concept = a set of objects

• Concept learning:

Given a sample of labeled objects we want to learn a boolean mapping from objects to T/F identifying an underlying concept

- E.g. EnjoySport concept
- Concept (hypothesis) space H
 - Restriction on the boolean description of concepts

Learning concepts
• Object (instance) space X
Concept (hypothesis) spaces H
$H \neq X$!!!!
Assume <i>n</i> binary attributes (e.g. true/false, warm/cold)
Instance space X:
2^n different objects
• Concept space H:
2^{2^n} possible concepts
= all possible subsets of objects
CS 2750 Machine Learning

- Start from the all true hypothesis h0 = (?, ?, ?, ?, ?, ?)
- Refine the concept description such that all samples are consistent (keep maximal possible generalization)

h = (?, ?, ?, ?, ?, ?)(Sunny, Warm, Normal, Strong, Warm, Same) T

h = (?, ?, ?, ?, ?, ?)

(Sunny, Warm, High, Strong, Warm, Same) T

h = (?, ?, ?, ?, ?, ?)

(Rainy, Cold, Normal, Strong, Warm, Change) F

```
h = (Sunny, ?, ?, ?, ?), (?, Warm, ?, ?, ?),
```

(?, ?, ?, ?, ?, Same)

Sample complexity of PAC learning

 $P(\text{any bad hypothesis survives } m \text{ samples}) \leq |H|(1-\varepsilon)^m$

 $\leq |H|e^{-\varepsilon m}$

In the PAC framework we want to bound this probability with the confidence factor $~~\delta~$

$$|H|e^{-\varepsilon m} \leq \delta$$

Expressing for m

i

$$m \ge \frac{(\ln(1/\delta) + \ln|H|)}{\varepsilon}$$

After *m* samples satisfying the above inequality any consistent hypothesis satisfies the PAC criterion

Learning 3-CNF

- Sample complexity for the k-CNF and k-DNF is polynomial
- k-DNF cannot be learned efficiently
- k-CNF can be learned efficiently. How? Assume 3-CNF $(a_1 \lor a_3 \lor a_7) \land (a_2 \lor \neg a_4 \lor a_5) \land ...$

Only a polynomial number of clauses with at most 3 variables !! $2n + 2n2(n-1) + 2n2(n-1)2(n-2) = O(n^3)$

Algorithm (specific to general learning):

- Start with the conjunction of all possible clauses (always false)
- On positive example any clause that is not true is deleted
- On negative examples do nothing

Interesting Any k-DNF can be converted into k-CNF

Adding noise

- We have a target concept but there is a chance of mislabeling the examples seen
- Can we PAC-learn also in this case?
- Blumer (1986). If h is a hypothesis that agrees with at least

$$m = \frac{1}{\varepsilon} \ln(\frac{n}{\delta})$$

samples drawn from the distribution then

$$P(error(h, c_T) \ge \varepsilon) \le \delta$$

Mitchell gives the sample complexity bound for the choice of the hypothesis with the best training error

- Learning boolean functions
- Most general and most specific consistent hypothesis.
- Mitchell's version space algorithm
- Probably approximately correct (PAC) learning.
- Sample complexity for PAC.
- Vapnik-Chervonenkis (VC) dimension.
- Improved sample complexity bounds.
- Adding noise.