CS 2750 Machine Learning

Lecture 2

Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

A learning system: basic cycle

Data
Data may need a lot of:
• Cleaning
Preprocessing (conversions)
Cleaning:
 Get rid of errors, noise,
 Removal of redundancies
Preprocessing:
– Renaming
 Rescaling (normalization)
– Discretization
– Abstraction
– Aggregation
– New attributes
CS 2750 Machine Learning

Model selection

- What is the right model to learn?
 - A prior knowledge helps a lot, but still a lot of guessing
 - Initial data analysis and visualization
 - We can make a good guess about the form of the distribution, shape of the function
 - Independences and correlations
- Overfitting problem
 - Take into account the **bias and variance** of error estimates
 - Simpler (more biased) model parameters can be estimated more reliably (smaller variance of estimates)
 - Complex model with many parameters parameter estimates are less reliable (large variance of the estimate)

Learning

Learning = optimization problem

- Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
- Parameter optimizations (continuous space)
 - Linear programming, Convex programming
 - Gradient methods: grad. descent, Conjugate gradient
 - Newton-Rhapson (2nd order method)
 - Levenberg-Marquard

Some can be carried **on-line** on a sample by sample basis

- Combinatorial optimizations (over discrete spaces):
 - Hill-climbing
 - Simulated-annealing
 - Genetic algorithms

CS 2750 Machine Learning

Parametric optimizations

- Sometimes can be solved directly but this depends on the objective function and the model
 - Example: squared error criterion for linear regression
- Very often the error function to be optimized is not that nice.

```
Error(\mathbf{w}) = f(\mathbf{w}) \qquad \mathbf{w} = (w_0, w_1, w_2 \dots w_k)
```

- a complex function of weights (parameters) Goal: $\mathbf{w}^* = \arg \min f(\mathbf{w})$
- Example of a possible method: Gradient-descent method Idea: move the weights (free parameters) gradually in the error decreasing direction

