
1

CS 2750 Machine Learning

CS 2750  Machine Learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

Lecture 2

Machine  Learning
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Types of learning
• Supervised learning

– Learning mapping between input x and desired output y
– Teacher gives me y’s for the learning purposes

• Unsupervised learning
– Learning relations between data components
– No specific outputs given by a teacher

• Reinforcement learning
– Learning mapping between input x and desired output y
– Critic does not give me y’s but instead a signal 

(reinforcement) of how good my answer was
• Other types of learning:

– Concept learning, explanation-based learning, etc.
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A learning system: basic cycle

1. Data:
2. Model selection:

– Select a model or a set of models (with parameters)
E.g.

3. Choose the objective function
– Squared error

4. Learning:
• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 
5. Testing:

– Apply the learned model to new data 
– E.g. predict ys for new inputs x using learned
– Evaluate on the test data
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• Simple holdout method
– Divide the data to the training and test data

– Typically 2/3 training and 1/3 testing

Testing of learning models

Learn (fit)

Dataset

Training set Testing set

Evaluate

Predictive
model

CS 2750 Machine Learning

Design cycle 

Data

Feature selection

Model selection

Learning

Testing/Evaluation

Require some prior 
knowledge
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior 
knowledge

CS 2750 Machine Learning

Data
Data may need a lot of:
• Cleaning
• Preprocessing (conversions)
Cleaning:

– Get rid of errors, noise,
– Removal of redundancies

Preprocessing:
– Renaming 
– Rescaling (normalization)
– Discretization
– Abstraction
– Aggregation
– New attributes
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Data preprocessing
• Renaming (relabeling) categorical values to numbers

– dangerous in conjunction with some learning methods
– numbers will impose an order that is not warranted

• Rescaling (normalization): continuous values transformed to 
some range, typically [-1, 1] or [0,1].

• Discretizations (binning): continuous values to a finite set of 
discrete values

High 2
Normal 1
Low 0

True 2
False 1
Unknown 0

CS 2750 Machine Learning

Data preprocessing

• Abstraction: merge together categorical values

• Aggregation: summary or aggregation operations, such 
minimum value, maximum value, average etc.

• New attributes:
– example: obesity-factor = weight/height
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Data biases
• Watch out for data biases:

– Try to understand the data source
– Make sure the data we make conclusions on are the same as 

data we used in the analysis 
– It is very easy to derive “unexpected” results when data 

used for analysis and learning are biased (pre-selected)

• Results (conclusions) derived for biased data do not hold in 
general !!!

CS 2750 Machine Learning

Data biases
Example 1: Risks in pregnancy study
• Sponsored by DARPA at military hospitals

• Study of a large sample of pregnant woman who visited 
military hospitals

• Conclusion: the factor with the largest impact on reducing 
risks during pregnancy (statistically significant) is a pregnant
woman being single 

• a woman that is single the smallest risk 
• What is wrong?
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Data

Example 2: Stock market trading (example by Andrew Lo)
– Data on stock performances of companies traded on stock 

market over past 25 year
– Investment goal: pick a stock to hold long term 
– Proposed strategy: invest in a company stock with an IPO 

corresponding to a Carmichael number 
- Evaluation result: excellent return over 25 years
- Where the magic comes from?

CS 2750 Machine Learning

Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior 
Knowledge
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Feature selection

• The size (dimensionality) of a sample can be enormous

• Example: document classification
– thousands of documents
– 10,000 different words
– Features/Inputs: counts of occurrences of different words
– Overfit threat - too many parameters to learn, not enough 

samples to justify the estimates the parameters of the model

• Feature selection: reduces the feature sets
– Methods for removing input features

),..,,( 21 d
iiii xxxx = d - very large

CS 2750 Machine Learning

Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior 
knowledge
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Model selection
• What is the right model to learn?

– A prior knowledge helps a lot, but still a lot of guessing
– Initial data analysis and visualization

• We can make a good guess about the form of the 
distribution, shape of the function

– Independences and correlations
• Overfitting problem

– Take into account the bias and variance of error estimates
– Simpler (more biased) model – parameters can be estimated 

more reliably (smaller variance of estimates) 
– Complex model with many parameters – parameter 

estimates are less reliable (large variance of the estimate)

CS 2750 Machine Learning

Solutions for overfitting

How to make the learner avoid the overfit?
• Assure sufficient number of samples in the training set

– May not be possible (small number of examples)
• Hold some data out of the training set = validation set

– Train (fit) on the training set (w/o data held out);
– Check for the generalization error on the validation set, 

choose the model based on the validation set error
(random re-sampling validation techniques)

• Regularization (Occam’s Razor)
– Explicit preference towards simple models 
– Penalize for the model complexity (number of parameters) 

in the objective function
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior 
knowledge

CS 2750 Machine Learning

Learning
• Learning  = optimization problem. Various criteria:

– Mean square error

– Maximum likelihood (ML) criterion

– Maximum posterior probability (MAP)
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Learning
Learning  = optimization problem
• Optimization problems can be hard to solve. Right choice of  a 

model and an error function makes a difference.
• Parameter optimizations (continuous space)

– Linear programming, Convex programming
– Gradient methods: grad. descent, Conjugate gradient
– Newton-Rhapson (2nd order method)
– Levenberg-Marquard
Some can be carried on-line on a sample by sample basis 

• Combinatorial optimizations (over discrete spaces):
• Hill-climbing
• Simulated-annealing
• Genetic algorithms

CS 2750 Machine Learning

Parametric optimizations

• Sometimes can be solved directly but this depends on the 
objective function and the model
– Example: squared error criterion for linear regression

• Very often the error function to be optimized is not that nice. 

- a complex function of weights (parameters)
Goal:

• Example of a possible method: Gradient-descent method
Idea:  move the weights (free parameters) gradually in the error 
decreasing direction

),,( 210 kwwww K=w)()( ww fError =

)(minarg* ww
w
f=
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Gradient descent method
• Descend to the minimum of the function using the gradient 

information

• Change the parameter value of w according to the gradient
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CS 2750 Machine Learning

Gradient descent method

• New value of the parameter

- a learning rate (scales the gradient changes)
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Gradient descent method
• To get to the function minimum repeat (iterate) the gradient 

based update few times

• Problems: local optima, saddle points, slow convergence
• More complex optimization techniques use additional 

information (e.g. second derivatives)

w)0(w

)(wError
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CS 2750 Machine Learning

On-line learning (optimization)

• On-line error - separates the contribution from a data point 

• Example: On-line gradient descent

• Advantages: 1. simple learning algorithm
2. no need to store data (on-line data streams)
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Derivatives based on different data points

• Error function looks at all data points at the same time
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior 
knowledge

CS 2750 Machine Learning

• Simple holdout method
– Divide the data to the training and test data

– Typically 2/3 training and 1/3 testing

Evaluation of learning models

Learn (fit)

Dataset

Training set Testing set

Evaluate

Predictive
model
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Other more complex methods 
• Use multiple train/test sets
• Based on various random 

re-sampling schemes:
– Random sub-sampling 
– Cross-validation
– Bootstrap

Evaluation

Classify/Evaluate

Data

TestTrain

Generate multiple 
train and test sets

Learning

Average Stats

TestTestTrainTrain

CS 2750 Machine Learning

• Random sub-sampling
– Repeat a simple 

holdout method k times

Evaluation

Classify/Evaluate

Data

TestTrain

Split randomly into 
70% Train, 30% Test

Learning

Average Stats

TestTestTrainTrain
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Cross-validation (k-fold)
• Divide data into k  

disjoint groups, test on 
k-th group/train on the 
rest

• Typically 10-fold 
cross-validation

• Leave one out cross-
validation
(k = size of the data D)

Evaluation

Classify/Evaluate

Test = ith group, Train on the rest

Data

TestTrain

Split into k groups 
of equal size

Learning

Average Stats

TestTestTrainTrain

CS 2750 Machine Learning

Bootstrap
• The training set of size 

N = size of the data D
• Sampling with the 

replacement

Evaluation

Classify/Evaluate

Data

TestTrain

Generate the 
training set of size N 

with replacement, 
the rest goes to the 

test set

Learning

Average Stats

TestTestTrainTrain
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• What if we want to compare the predictive performance on a 
classification or a regression problem  for two different 
learning methods?

• Solution: compare the error results on the test data set or the 
average statistics on the same training/testing data splits

• Answer: the method with better (smaller) testing error gives a 
better generalization error.

• But we need to use statistics to validate the choice 

Evaluation

CS 2750 Machine Learning

• Problem: we cannot be 100 %  sure about generalization errors
• Solution: test the statistical significance of the result
• Central limit theorem:

Let random variables                         form a random sample 
from a distribution with mean        and variance       ,  then if 
the sample n is large, the distribution

Evaluation
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• Sample mean:

• Assume: 
Regression learner 1 uses function             to predict ys
Regression learner 2 uses function             to predict ys

Statistical significance test 
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CS 2750 Machine Learning

• Two learners are the same in terms of the generalization 
error when

• Sample mean (estimate of the last quantity)

• Statistical tests for the mean
– H0 (null hypothesis)
– H1 (alternative hypothesis)

Statistical significance test 
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• Statistical tests for the mean
– H0 (null hypothesis)
– H1 (alternative hypothesis)

• Basic idea: 
we use the sample mean and check how probable it is to occur 
given that the true mean is 0

If the probability that             comes from the normal distribution 
with mean 0 is small – we reject the null hypothesis on that 
probability level

Statistical significance test
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• Statistical tests for the mean
– H0 (null hypothesis)
– H1 (alternative hypothesis)

• Assume we know standard deviation

Statistical significance test 
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• Statistical tests for the mean
– H0 (null hypothesis)

• Assume we know standard deviation

• Z-test: If  z is outside of the interval – reject the null 
hypothesis at significance level 5 %

Statistical significance test 
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• Statistical tests for the mean
– H0 (null hypothesis)

• Problem: we do not know the standard deviation
• Solution:

• T-test: If  t is outside of the tabulated interval reject the 
null hypothesis at the corresponding significance level

Statistical significance test 
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