CS 2750 Machine Learning Lecture 17

Dimensionality reduction Feature selection

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

Dimensionality reduction with neural nets

• Error criterion:

$$E = \frac{1}{2} \sum_{n=1}^{N} \sum_{i=1}^{d} \left(y_i(x^n) - x^n \right)^2$$

- Error measure tries to recover the original data through limited number of dimensions in the middle layer
- **Non-linearities** modeled through intermediate layers between the middle layer and input/output
- If no intermediate layers are used the model replicates PCA optimization through learning

Feature selection

How to find a good subset of inputs/features?

- We need:
 - A criterion for ranking good inputs/features
 - Search procedure for finding a good set of features
- Feature selection process can be:
 - Dependent on the learning task
 - e.g. classification
 - Selection of features affected by what we want to predict
 - Independent of the learning task
 - inputs are reduced without looking at the output
 PCA, independent component analysis, clustering of inputs
 - may lack the accuracy for classification/regression tasks

CS 2750 Machine Learning

Task-dependent feature selection

Assume:

- **Classification problem**: **x** input vector, *y* output
- Feature mappings $\boldsymbol{\varphi} = \{\phi_1(\mathbf{x}), \phi_2(\mathbf{x}), \dots, \phi_k(\mathbf{x}), \dots\}$

Objective: Find a subset of features that gives/preserves most of the output prediction capabilities

Selection approaches:

• Filtering approaches

- Filter out features with small predictive potential
- done before classification; typically uses univariate analysis
- Wrapper approaches
 - Select features that directly optimize the accuracy of the multivariate classifier
- Embedded methods
 - Feature selection and learning closely tied in the method

Feature selection through filtering

- Assume:
 - Classification problem: x input vector, y output
 - Inputs in x or feature mappings $\phi_k(\mathbf{x})$

• How to select the feature:

- Univariate analysis

- Pretend that only one variable, x_k , exists
- See how well it predicts the output y alone
- **Example:** differentially expressed features (or inputs)
 - Good separation in binary (case/control settings)

Feature selection: wrappers

Wrapper approach:

• The feature selection is driven by the prediction accuracy of the classifier (regressor) actually built

How to find the appropriate feature set?

- Idea: Greedy search in the space of classifiers
 - Gradually add features improving most the quality score
 - Gradually remove features that effect the accuracy the least
 - Score should reflect the accuracy of the classifier (error) and also prevent overfit
- Standard way to measure the quality:
 - Internal cross-validation (m-fold cross validation)

CS 2750 Machine Learning

- Example of a greedy (forward) search:
 - logistic regression model with features

Start with $p(y=1 | \mathbf{x}, \mathbf{w}) = g(w_o)$

Choose the feature $\phi_i(\mathbf{x})$ with the best score $p(y=1 | \mathbf{x}, \mathbf{w}) = g(w_o + w_i \phi_i(\mathbf{x}))$

Choose the feature $\phi_j(\mathbf{x})$ with the best score $p(y=1 | \mathbf{x}, \mathbf{w}) = g(w_o + w_i \phi_i(\mathbf{x}) + w_j \phi_j(\mathbf{x}))$

Etc.

When to stop ?

