CS 2750 Machine Learning

Lecture 16

Learning Bayesian belief networks

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Learning of BBN

Learning.

- Learning of parameters of conditional probabilities
- Learning of the network structure

Variables:

- Observable - values present in every data sample
- Hidden - they values are never observed in data
- Missing values - values sometimes present, sometimes not
Already Covered: Learning of parameters of BBN

1. With observable variables
2. Hidden variables and missing values

Model selection

- BBN has two components:
- Structure of the network (models conditional independences)
- A set of parameters (conditional child-parent distributions)
- How to learn the structure?

Learning the structure

Criteria we can choose to score the structure S

- Marginal likelihood
maximize $P(D \mid S, \xi)$
ξ - represents the prior knowledge
- Maximum posterior probability

$$
\operatorname{maximize} \quad P(S \mid D, \xi)
$$

$$
P(S \mid D, \xi)=\frac{P(D \mid S, \xi) P(S \mid \xi)}{P(D \mid \xi)}
$$

How to compute marginal likelihood $P(D \mid S, \xi)$?

Learning of BBNs

- Notation:
- i ranges over all possible variables $i=1, . ., n$
$-j=1, . ., q$ ranges over all possible parent combinations
- $k=1, . ., r$ ranges over all possible variable values
$-\boldsymbol{\Theta} \quad$ - parameters of the BBN
$\Theta_{i j}$ is a vector of $\Theta_{i j k}$ representing parameters of the conditional probability distribution; such that $\sum_{k=1}^{r} \Theta_{i j k}=1$
$N_{i j k}$ - a number of instances in the dataset where parents of variable X_{i} take on values j and X_{i} has value k
$N_{i j}=\sum_{k=1}^{\text {of variabler }} N_{i j k}$
$\alpha_{i j k} \quad{ }_{r=1}$ - prior counts (parameters of Beta and Dirichlet priors)
$\alpha_{i j}=\sum_{k=1}^{r} \alpha_{i j k}$

Marginal likelihood

- Integrate over all possible parameter settings

$$
P(D \mid S, \xi)=\int_{\Theta} P(D \mid S, \Theta, \xi) p(\Theta \mid S, \xi) d \Theta
$$

- Using the assumption of parameter and sample independence

$$
P(D \mid S, \xi)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)} \prod_{k=1}^{r_{i}} \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}
$$

- We can use log-likelihood score instead
$\log P(D \mid S, \xi)=\sum_{i=1}^{n}\left\{\sum_{j=1}^{q_{i}} \log \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)}+\sum_{k=1}^{r_{i}} \log \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}\right\}$
Score is decomposable along variables !!!

Appendix: marginal likelihood

- Marginal likelihood

$$
P(D \mid S, \xi)=\int_{\Theta} P(D \mid S, \Theta, \xi) p(\Theta \mid S, \xi) d \Theta
$$

- From the iid assumption:

$$
P(\boldsymbol{D} \mid S, \boldsymbol{\Theta})=\prod_{h=1}^{N} \prod_{i=1}^{n} P\left(x_{i}^{h} \mid \text { parents }_{i}^{h}, \boldsymbol{\Theta}\right)
$$

- Let $r_{i}=$ number of values that attribute x_{i} can take
$q_{i}=$ number of possible parent combinations
$\mathrm{N}_{\mathrm{ijk}}=$ number of cases in D where x_{i} has value k and parents with values j .

$$
\begin{aligned}
& =\prod_{i}^{n} \prod_{j}^{q_{i}} \prod_{k}^{r_{i}} P\left(x_{i}=k \mid \text { parents }_{i}=j, \boldsymbol{\Theta}\right)^{N_{i j k}} \\
& =\prod_{i}^{n} \prod_{j}^{q_{i}} \prod_{k}^{r_{i}} \theta_{i j k}^{N_{i j k}}
\end{aligned}
$$

Appendix: the marginal likelihood

$$
P(D \mid S, \xi)=\int_{\Theta} P(D \mid S, \Theta, \xi) p(\Theta \mid S, \xi) d \Theta
$$

- From parameter independence

$$
p(\boldsymbol{\Theta} \mid S, \xi)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} p\left(\Theta_{i j} \mid S, \xi\right)
$$

- Priors for $p\left(\Theta_{i j} \mid S, \xi\right)$
- $\Theta_{i j}=\left(\Theta_{i j 1}, \ldots, \Theta_{i j r_{i}}\right)$ is a vector of parameters;
- we use a Dirichlet distribution with parameters $\boldsymbol{\alpha}$

$$
\begin{aligned}
& P\left(\Theta_{i j} \mid S, \xi\right)=P\left(\Theta_{i j 1}, \ldots, \Theta_{i j j_{i}} \mid S, \xi\right)=\operatorname{Dir}\left(\Theta_{i j 1}, \ldots, \Theta_{i j j_{i}} \mid \alpha\right) \\
& =\frac{\Gamma\left(\sum_{k=1}^{r_{i}} \alpha_{i j k}\right)}{\prod_{k=1}^{r_{i}} \Gamma\left(\alpha_{i j k}\right)} \prod_{k=1}^{r_{i}} \Theta_{i j k}^{\alpha_{j k}-1}
\end{aligned}
$$

Appendix: marginal likelihood

- Combine things together:

$$
\begin{aligned}
P\left(D \mid S_{i}\right) & =\int_{\Theta} P\left(D \mid S_{i}, \Theta\right) P\left(\Theta \mid S_{i}\right) d \Theta \\
& =\int \prod_{i}^{n} \prod_{j}^{q_{i}} \prod_{k}^{r_{i}} \Theta_{i j k}^{N_{j k}} \cdot \frac{\Gamma\left(\sum_{k=1}^{r_{i}} \alpha_{i j k}\right)}{\prod_{k=1}^{r_{i}} \Gamma\left(\alpha_{i j k}\right)} \prod_{k=1}^{r_{i}} \Theta_{i j k}^{\alpha_{j k}-1} d \Theta \\
& =\prod_{i}^{n} \prod_{j}^{q_{i}} \frac{\Gamma\left(\sum_{k=1}^{r_{i}} \alpha_{i j k}\right)}{\prod_{k=1}^{r_{i}} \Gamma\left(\alpha_{i j k}\right)} \int \prod_{k=1}^{r_{i}} \Theta_{i j k}^{N_{i j k}+\alpha_{i j k}-1} d \Theta \\
& =\prod_{i}^{n} \prod_{j}^{q_{i}} \frac{\Gamma\left(\alpha_{i j}\right)}{\prod_{k=1}^{r_{i}} \Gamma\left(\alpha_{i j k}\right)} \cdot \frac{\prod_{k=1}^{r_{i}} \Gamma\left(a_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)}
\end{aligned}
$$

A trick to compute the marginal likelihood

- Integrate over all possible parameter settings

$$
P(D \mid S, \xi)=\int_{\Theta} P(D \mid S, \Theta, \xi) p(\Theta \mid S, \xi) d \Theta
$$

- Posterior of parameters, given data and the structure

$$
p(\boldsymbol{\Theta} \mid D, S, \xi)=\frac{P(D \mid \boldsymbol{\Theta}, S, \xi) p(\boldsymbol{\Theta} \mid S, \xi)}{P(D \mid S, \xi)}
$$

Trick

$$
P(D \mid S, \xi)=\frac{P(D \mid \boldsymbol{\Theta}, S, \xi) p(\boldsymbol{\Theta} \mid S, \xi)}{p(\boldsymbol{\Theta} \mid D, S, \xi)}
$$

- Gives the solution
$P(D \mid S, \xi)=\prod_{i=1}^{n} \prod_{j=1}^{q_{i}} \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)} \prod_{k=1}^{r_{i}} \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}$

Learning the structure

- Likelihood of data for the BBN (structure and parameters)

$$
P(D \mid S, \Theta, \xi)
$$

measures the goodness of fit of the BBN to data

- Marginal likelihood (for the structure only)

$$
P(D \mid S, \xi)
$$

- Does not measure only a goodness of fit. It is:
- different for structures of different complexity
- Incorporates preferences towards simpler structures, implements Occam's razor !!!!

Occam's Razor

- Why there is a preference towards simpler structures ?

Rewrite marginal likelihood as

$$
P(D \mid S, \xi)=\frac{\int_{\Theta} P(D \mid S, \Theta, \xi) p(\Theta \mid S, \xi) d \Theta}{\int_{\Theta} p(\Theta \mid S, \xi) d \Theta}
$$

We know that

$$
\int_{\Theta} p(\Theta \mid S, \xi) d \Theta=1
$$

Interpretation: in more complex structures there are more ways parameters can be set badly

- The numerator: count of good assignments
- The denominator: count of all assignments

Approximations of probabilistic scores

Approximations of the marginal likelihood and posterior scores

- Information based measures
- Akaike criterion
- Bayesian information criterion (BIC)
- Minimum description length (MDL)
- Reflect the tradeoff between the fit to data and preference towards simpler structures
Example: Akaike criterion.
Maximize: $\quad \operatorname{score}(S)=\log P\left(D \mid S, \Theta_{M L}, \xi\right)-\operatorname{compl}(\mathrm{S})$

Bayesian information criterion (BIC)

Maximize:

$$
\mathbf{e}: \operatorname{score}(S)=\log P\left(D \mid S, \Theta_{M L}, \xi\right)-\frac{1}{2} \operatorname{compl}(\mathrm{~S}) \log \mathrm{N}
$$

Optimizing the structure

Finding the best structure is a combinatorial optimization problem

- A good feature: the score is decomposable along variables:
$\log P(D \mid S, \xi)=\sum_{i=1}^{n}\left\{\sum_{j=1}^{q_{i}} \log \frac{\Gamma\left(\alpha_{i j}\right)}{\Gamma\left(\alpha_{i j}+N_{i j}\right)}+\sum_{k=1}^{r_{i}} \log \frac{\Gamma\left(\alpha_{i j k}+N_{i j k}\right)}{\Gamma\left(\alpha_{i j k}\right)}\right\}$
Algorithm idea: Search the space of structures using local changes (additions and deletions of a link)

Advantage:

- we do not have to compute the whole score from scratch
- Recompute the partial score for the affected variable

Optimizing the structure. Algorithms

- Greedy search
- Start from the structure with no links
- Add a link that yields the best score improvement

- Metropolis algorithm (with simulated annealing)
- Local additions and deletions
- Avoids being trapped in "local" optimal

Dimensionality reduction Feature selection

Dimensionality reduction. Motivation.

- Is there a lower dimensional representation of the data that captures well its characteristics?
- Assume:
- We have an data $\left\{\mathbf{x}_{1}, \mathbf{x}_{2}, \ldots, \mathbf{x}_{\mathrm{N}}\right\}$ such that

$$
\mathbf{x}_{i}=\left(x_{i}^{1}, x_{i}^{2}, . ., x_{i}^{d}\right)
$$

- Assume the dimension d of the data point \boldsymbol{x} is very large
- We want to analyze \boldsymbol{x}
- Methods of analysis are sensitive to the dimensionality d
- Our goal:
- Find a lower dimensional representation of data d'

Principal component analysis (PCA)

- Objective: We want to replace a high dimensional input with a small set of features (obtained by combining inputs)
- PCA:
- A linear transformation of d dimensional input x to M dimensional feature vector z such that $M<d$ under which the retained variance is maximal.
- Equivalently it is the linear projection for which the sum of squares reconstruction cost is minimized.

CS 2750 Machine Learning

PCA

CS 2750 Machine Learning

PCA

Principal component analysis (PCA)

- PCA:
- linear transformation of d dimensional input x to M dimensional feature vector z such that $M<d$ under which the retained variance is maximal.
- Task independent
- Fact:
- A vector x can be represented using a set of orthonormal basis vectors u

$$
\mathbf{x}=\sum_{i=1}^{d} z_{i} \mathbf{u}_{i}
$$

- Leads to transformation of coordinates (from x to z using u's)

$$
z_{i}=\mathbf{u}_{i}{ }^{T} \mathbf{x}
$$

PCA

- Idea: replace d coordinates with M of z_{i} coordinates to represent x. We want to find the subset M of basis vectors.

$$
\widetilde{\mathbf{x}}=\sum_{i=1}^{M} z_{i} \mathbf{u}_{i}+\sum_{i=M+1}^{d} b_{i} \mathbf{u}_{i}
$$

b_{i} - constant and fixed

- How to choose the best set of basis vectors?
- We want the subset that gives the best approximation of data x in the dataset on average (we use least squares fit)
Error for data entry $\mathbf{x}^{n} \quad \mathbf{x}^{n}-\widetilde{\mathbf{x}}^{n}=\sum_{i=M+1}^{d}\left(z_{i}^{n}-b_{i}\right) \mathbf{u}_{i}$

$$
E_{M}=\frac{1}{2} \sum_{n=1}^{N}\left\|\mathbf{x}^{n}-\widetilde{\mathbf{x}}^{n}\right\|=\frac{1}{2} \sum_{n=1}^{N} \sum_{i=M+1}^{d}\left(z_{i}^{n}-b_{i}\right)^{2}
$$

PCA

- Differentiate the error function with regard to all b_{i} and set equal to 0 we get:

$$
b_{i}=\frac{1}{N} \sum_{n=1}^{N} z_{i}^{n}=\mathbf{u}_{i}{ }^{T} \overline{\mathbf{x}} \quad \overline{\mathbf{x}}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}^{n}
$$

- Then we can rewrite:

$$
E_{M}=\frac{1}{2} \sum_{i=M+1}^{d} \mathbf{u}_{i}{ }^{T} \boldsymbol{\Sigma} \mathbf{u}_{i} \quad \mathbf{\Sigma}=\sum_{n=1}^{N}\left(\mathbf{x}^{n}-\overline{\mathbf{x}}\right)\left(\mathbf{x}^{n}-\overline{\mathbf{x}}\right)^{T}
$$

- The error function is optimized when basis vectors satisfy:

$$
\Sigma \mathbf{u}_{i}=\lambda_{i} \mathbf{u}_{i} \quad E_{M}=\frac{1}{2} \sum_{i=M+1}^{d} \lambda_{i}
$$

The best \boldsymbol{M} basis vectors: discard vectors with $d-M$ smallest eigenvalues (or keep vectors with M largest eigenvalues)
Eigenvector \mathbf{u}_{i} - is called a principal component

PCA

- Once eigenvectors \mathbf{u}_{i} with largest eigenvalues are identified, they are used to transform the original d-dimensional data to M dimensions

- To find the "true" dimensionality of the data d ' we can just look at eigenvalues that contribute the most (small eigenvalues are disregarded)
- Problem: PCA is a linear method. The "true" dimensionality can be overestimated. There can be non-linear correlations.

