

Generative classifier model

- Generative classifier model with Gaussian densities
- Assume the class labels are known. The ML estimate is

Clustering example

- A set of patient cases
- We want to partition them into groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

A set of pa	tient cas	ses	n into the group	a haad on similariti
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

Clustering example. Distance measures.

In general, one can choose an arbitrary distance measure.

Properties of distance metrics:

Assume 2 data entries *a*, *b*

Positiveness: $d(a,b) \ge 0$ Symmetry:d(a,b) = d(b,a)Identity:d(a,a) = 0

Distance measures

Assume pure real-valued data-points:

12	34.5	78.5	89.2	19.2
23.5	41.4	66.3	78.8	8.9
33.6	36.7	78.3	90.3	21.4
17.2	30.1	71.6	88.5	12.5
•••				

What distance metric to use?

Euclidian: works for an arbitrary k-dimensional space

$$d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$$

CS 2750 Machine Learning

Distance measures Assume pure real-valued data-points: 78.5 89.2 19.2 12 34.5 23.5 41.4 66.3 78.8 8.9 33.6 36.7 78.3 90.3 21.4 17.2 30.1 71.6 88.5 12.5 What distance metric to use? Squared Euclidian: works for an arbitrary k-dimensional space $d^{2}(a,b) = \sum_{i=1}^{k} (a_{i} - b_{i})^{2}$

Distance measures.

Assume pure real-valued data-points:

12	34.5	78.5	89.2	19.2
23.5	41.4	66.3	78.8	8.9
33.6	36.7	78.3	90.3	21.4
17.2	30.1	71.6	88.5	12.5

Manhattan distance:

works for an arbitrary k-dimensional space

$$d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$$

Etc. ..

CS 2750 Machine Learning

Distance measures Generalized distance metric: d²(a, b) = (a - b)Γ⁻¹(a - b)^T Γ semi-definite positive matrix Γ⁻¹ is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric. If Γ = I we get squared Euclidean Γ=Σ (covariance matrix) – we get the Mahalanobis distance that takes into account correlations among attributes

					Distance measures.
Assume	pu	re	b	ina	ry values data:
0	1		1	0	1
1	0		1	0	1
0	1		1	0	1
1	1		1	1	1
	•				
What dis	tar	ce	n	neti	ric to use?
Hammin to mak	ig ce 1	<mark>dis</mark> the	s <mark>ta</mark> e e	n c ntr	e: The number of bits that need to be changed ies the same
The same	e n	net	ric	e ca	in be used for pure categorical values:
• numbersame	er (of	va	lue	s that need to be changed to make them the

Patient #	Age	Sex	Heart Rate	Blood pressure .
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85
tient 4 tient 5	65 70 etric to r	F M use?	90 84	130/90 135/85

nbination of	real-va	lued a	nd categorical	attributes
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

Hamming distances for subsets of attributes

	Clustering argorithms
•	K-means algorithm
	 suitable only when data points have continuous values; groups are defined in terms of cluster centers (also called means). Refinement of the method to categorical values: K-medoids
•	Probabilistic methods (with EM)
	 Latent variable models: class (cluster) is represented by a latent (hidden) variable value
	- Every point goes to the class with the highest posterior
	 Examples: mixture of Gaussians, Naïve Bayes with a hidden class
•	Hierarchical methods
	– Agglomerative
	– Divisive

K-means

K-Means algorithm:

Initialize randomly *k* values of means (centers) Repeat two steps until no change in the means:

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Stop when no change in the means

Properties:

- Minimizes the sum of squared center-point distances for all clusters
- The algorithm always converges (to the local optima).

CS 2750 Machine Learning

K-means algorithm

• Properties:

- converges to centers minimizing the sum of squared centerpoint distances (still local optima)
- The result is sensitive to the initial means' values

• Advantages:

- Simplicity
- Generality can work for more than one distance measure

• Drawbacks:

- Can perform poorly with overlapping regions
- Lack of robustness to outliers
- Good for attributes (features) with continuous values
 - Allows us to compute cluster means
 - k-medoid algorithm used for discrete data

Probabilistic (EM-based) algorithms Latent variable models • Examples: Naïve Bayes with hidden class **Mixture of Gaussians** • Partitioning: - the data point belongs to the class with the highest posterior • Advantages: - Good performance on overlapping regions - Robustness to outliers Data attributes can have different types of values Drawbacks: - EM is computationally expensive and can take time to converge Density model should be given in advance CS 2750 Machine Learning

Hierarchical clustering

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

CS 2750 Machine Learning

Cluster merging • **Construction of clusters through greedy agglomerative approach** • Merge pair of clusters in a bottom-up fashion, starting from singleton clusters • Merge clusters based on **cluster (or linkage) distances**. Defined in terms of point distances. **Examples**: Min distance $d_{\min}(C_i, C_j) = \min_{p \in C_i, q \in C_j} |p - q|$ Max distance $d_{\max}(C_i, C_j) = \max_{p \in C_i, q \in C_j} |p - q|$ Mean distance $d_{\max}(C_i, C_j) = \left|\frac{1}{|C_i|}\sum_i p_i - \frac{1}{|C_j|}\sum_j q_j\right|$

A set of pa We want to	tient cas	ses on then	n into the group	os based on similariti
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

Clustering example

- A set of patient cases
- We want to partition them into the groups based on similarities

Age	Sex	Heart Rate	Blood pressure
55	М	85	125/80
62	М	87	130/85
67	F	80	126/86
65	F	90	130/90
70	М	84	135/85
	Age 55 62 67 65 70	Age Sex 55 M 62 M 67 F 65 F 70 M	AgeSexHeart Rate55M8562M8767F8065F9070M84

How to design the distance metric to quantify similarities?

Distance measures. Assume pure real-valued data-points: 78.5 89.2 12 34.5 19.2 66.3 78.8 23.5 41.4 8.9 33.6 36.7 78.3 90.3 21.4 17.2 30.1 71.6 88.5 12.5 What distance metric to use? Euclidian: works for an arbitrary k-dimensional space $d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$ CS 2750 Machine Learning

CS 2750 Machine Learning

Distance measures. Assume pure real-valued data-points: 12 34.5 78.5 89.2 19.2 66.3 78.8 23.5 41.4 8.9 33.6 36.7 78.3 90.3 21.4 17.2 30.1 71.6 88.5 12.5 Assume that two variables are highly correlated in kdimensional space $d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$ Etc. .. CS 2750 Machine Learning

Distance measures. Generalized distance metric: d²(a, b) = (a - b) Γ⁻¹(a - b)^T Γ⁻¹ is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric. If Γ = I we get squared Euclidean Γ=Σ Mahalanobis distance takes into account correlations among attributes

	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

Distance measures.

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and Edit distances for subsets of attributes

	K-means
K-	Means algorithm:
	Initialize randomly k values of means (centers)
	Repeat two steps until no change in the means:
	 Partition the data according to the current set of means (using the similarity measure)
	 Move the means to the center of the data in the current partition
	Stop when no change in the means
Pro	operties:
•	Minimizes the sum of squared center-point distances for all clusters
•	The algorithm always converges (local optima).
	CS 2750 Machine Learning

K-means algorithm
Properties:
 converges to centers minimizing the sum of squared center- point distances (still local optima)
 The result is sensitive to the initial means' values
Advantages:
– Simplicity
 Generality – can work for more than one distance measure
Drawbacks:
 Can perform poorly with overlapping regions
 Lack of robustness to outliers
- Good for attributes (features) with continuous values
 Allows us to compute cluster means
• k-medoid algorithm used for discrete data
CS 2750 Machine Learning

Probabilistic (EM-based) algorithms Latent variable models • Examples: Naïve Bayes with hidden class **Mixture of Gaussians** • Partitioning: - the data point belongs to the class with the highest posterior • Advantages: - Good performance on overlapping regions - Robustness to outliers Data attributes can have different types of values • Drawbacks: - EM is computationally expensive and can take time to converge Density model should be given in advance CS 2750 Machine Learning

Hierarchical clustering.

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

