CS 2750 Machine Learning Lecture 13

Bayesian belief networks

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Midterm exam

When: Wednesday, March 2, 2011

Midterm is:

- In-class (75 minutes)
- closed book
- material covered during the semester including lecture today

Project proposals

Due: Wednesday, March 16, 2011

1 page long

Proposal

- Written proposal:
 - 1. Outline of a learning problem, type of data you have available. Why is the problem important?
 - 2. Learning methods you plan to try and implement for the problem. References to previous work.
 - 3. How do you plan to test, compare learning approaches
 - 4. Schedule of work (approximate timeline of work)

CS 2750 Machine Learning

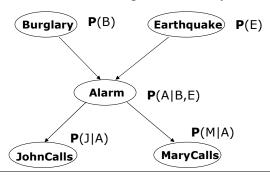
Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a **smaller number of parameters**.
- Take advantage of **conditional and marginal independences** among random variables
- A and B are independent

$$P(A,B) = P(A)P(B)$$

• A and B are conditionally independent given C


$$P(A, B | C) = P(A | C)P(B | C)$$

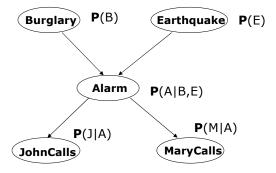
 $P(A | C, B) = P(A | C)$

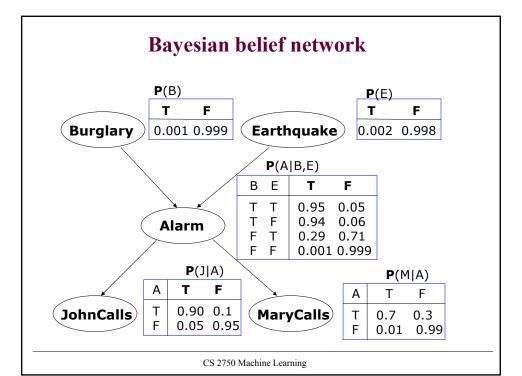
Bayesian belief network

1. Directed acyclic graph

- **Nodes** = random variables Burglary, Earthquake, Alarm, Mary calls and John calls
- Links = direct (causal) dependencies between variables.

 The chance of Alarm being is influenced by Earthquake,
 The chance of John calling is affected by the Alarm




CS 2750 Machine Learning

Bayesian belief network

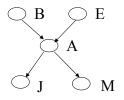
2. Local conditional distributions

• relate variables and their parents

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1...n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

Example:


Assume the following assignment of values to random variables

$$B=T, E=T, A=T, J=T, M=F$$

Then its probability is:

$$P(B = T, E = T, A = T, J = T, M = F) =$$

$$P(B = T)P(E = T)P(A = T \mid B = T, E = T)P(J = T \mid A = T)P(M = F \mid A = T)$$

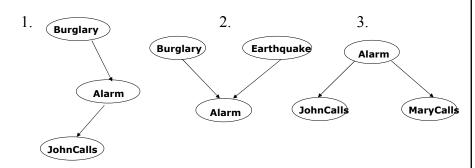
Bayesian belief networks (BBNs)

Bayesian belief networks

- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

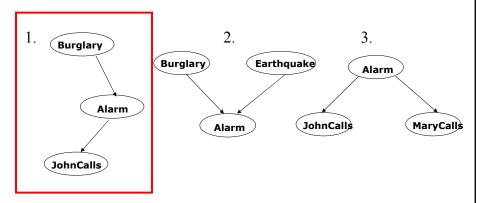
Answer:

- Graphical structure encodes conditional and marginal independences among random variables
- A and B are independent P(A,B) = P(A)P(B)
- A and B are conditionally independent given C


$$P(A \mid C, B) = P(A \mid C)$$

$$P(A, B \mid C) = P(A \mid C)P(B \mid C)$$

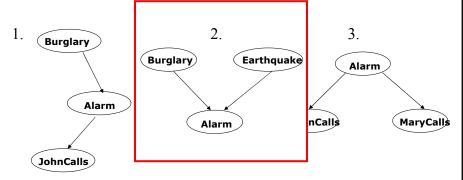
The graph structure implies the decomposition !!!


CS 2750 Machine Learning

Independences in BBNs

3 basic independence structures:

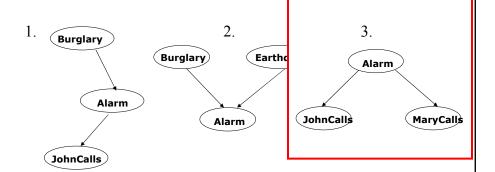
Independences in BBNs


1. JohnCalls is independent of Burglary given Alarm

$$P(J \mid A, B) = P(J \mid A)$$

$$P(J, B \mid A) = P(J \mid A)P(B \mid A)$$

CS 2750 Machine Learning


Independences in BBNs

2. Burglary **is independent** of Earthquake (not knowing Alarm) Burglary and Earthquake **become dependent** given Alarm!!

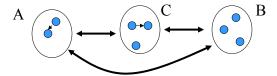
$$P(B, E) = P(B)P(E)$$

Independences in BBNs

3. MaryCalls is independent of JohnCalls given Alarm

$$P(J \mid A, M) = P(J \mid A)$$

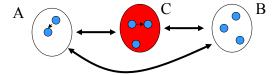
$$P(J, M \mid A) = P(J \mid A)P(M \mid A)$$


CS 2750 Machine Learning

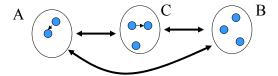
Independence in BBN

- BBN distribution models many conditional independence relations relating distant variables and sets
- These are defined in terms of the graphical criterion called dseparation
- D-separation in the graph
 - Let X,Y and Z be three sets of nodes
 - If X and Y are d-separated by Z then X and Y are conditionally independent given Z
- D-separation:
 - A is d-separated from B given C if every undirected path between them is blocked
- Path blocking
 - 3 cases that expand on three basic independence structures

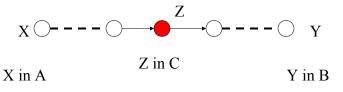
Undirected path blocking


A is d-separated from B given C if every undirected path between them is **blocked**

CS 2750 Machine Learning


Undirected path blocking

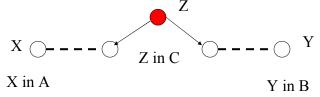
A is d-separated from B given C if every undirected path between them is **blocked**



Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

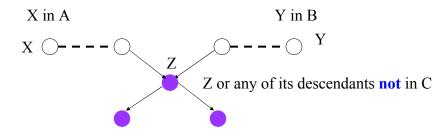
• 1. Path blocking with a linear substructure



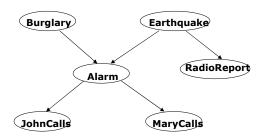
CS 2750 Machine Learning

Undirected path blocking

A is d-separated from B given C if every undirected path between them is **blocked**

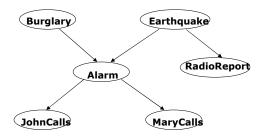

• 2. Path blocking with the wedge substructure

Undirected path blocking


A is d-separated from B given C if every undirected path between them is **blocked**

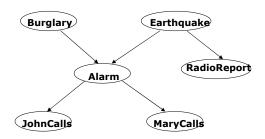
• 3. Path blocking with the vee substructure

CS 2750 Machine Learning


Independences in BBNs

• Earthquake and Burglary are independent given MaryCalls

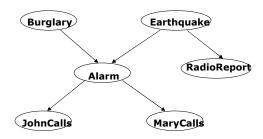
é


Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls F
- Burglary and MaryCalls are independent (not knowing Alarm) ?

CS 2750 Machine Learning

Independences in BBNs



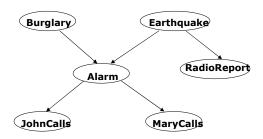
- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm) F

F

• Burglary and RadioReport are independent given Earthquake

Independences in BBNs

- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm) F


F

F

- Burglary and RadioReport are independent given Earthquake T
- Burglary and RadioReport are independent given MaryCalls ?

CS 2750 Machine Learning

Independences in BBNs

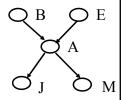
- Earthquake and Burglary are independent given MaryCalls
- Burglary and MaryCalls are independent (not knowing Alarm) F
- Burglary and RadioReport are independent given Earthquake
- Burglary and RadioReport are independent given MaryCalls F

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represents the full joint distribution over the variables more compactly using the product of local conditionals.
- So how did we get to local parameterizations?

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1,..n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$


• The decomposition is implied by the set of independences encoded in the belief network.

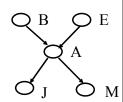
CS 2650 Staghing Localning

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

Rewrite the full joint probability using the product rule:


$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$=P(J=T | B=T, E=T, A=T, M=F)P(B=T, E=T, A=T, M=F)$$

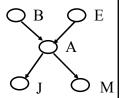
 $=P(J=T | A=T)P(B=T, E=T, A=T, M=F)$

CS 2750 Machine Learning

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$


$$= P(J = T | B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= \underline{P(J = T | A = T)}P(B = T, E = T, A = T, M = F)$$

$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F | A = T)P(B = T, E = T, A = T)$$

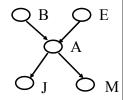
Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J=T | B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$$

$$= \underline{P(J=T | A=T)} P(B=T, E=T, A=T, M=F)$$

$$P(M=F | B=T, E=T, A=T) P(B=T, E=T, A=T)$$


$$\underline{P(M=F | A=T)} P(B=T, E=T, A=T)$$

$$\underline{P(A=T | B=T, E=T)} P(B=T, E=T)$$

CS 2750 Machine Learning

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J = T | B = T, E = T, A = T, M = F)P(B = T, E = T, A = T, M = F)$$

$$= P(J = T | A = T)P(B = T, E = T, A = T, M = F)$$

$$P(M = F | B = T, E = T, A = T)P(B = T, E = T, A = T)$$

$$P(M = F | A = T)P(B = T, E = T, A = T)$$

$$\underline{P(A=T \mid B=T, E=T)}P(B=T, E=T)$$

$$P(B=T)P(E=T)$$

Rewrite the full joint probability using the product rule:

$$P(B=T, E=T, A=T, J=T, M=F) =$$

$$= P(J=T | B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$$

$$= P(J=T | A=T) P(B=T, E=T, A=T, M=F)$$

$$P(M=F | B=T, E=T, A=T) P(B=T, E=T, A=T)$$

$$P(M=F | A=T) P(B=T, E=T, A=T)$$

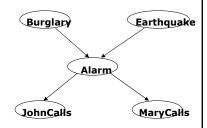
$$P(A=T | B=T, E=T) P(B=T, E=T)$$

$$= P(J=T | A=T) P(M=F | A=T) P(A=T | B=T, E=T) P(B=T) P(E=T)$$

Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1,..n} \mathbf{P}(X_i \mid pa(X_i))$$
What did we save?


Alarm example: 5 binary (True, False) variables

of parameters of the full joint:

$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$

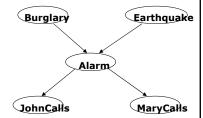
Parameter complexity problem

• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_{1}, X_{2}, ..., X_{n}) = \prod_{i=1}^{n} \mathbf{P}(X_{i} \mid pa(X_{i}))$$

• What did we save?

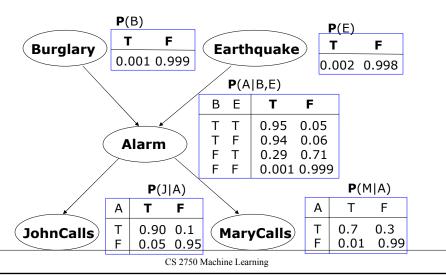
Alarm example: 5 binary (True, False) variables


of parameters of the full joint:

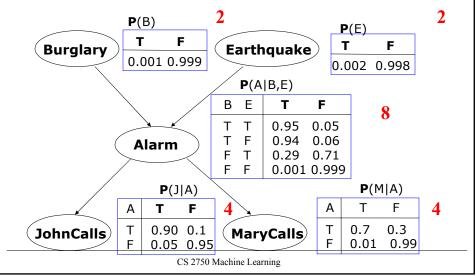
$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$


of parameters of the BBN: ?

CS 2750 Machine Learning


Bayesian belief network.

• In the BBN the **full joint distribution** is expressed using a set of local conditional distributions

Bayesian belief network.

• In the BBN the **full joint distribution** is expressed using a set of local conditional distributions

Parameter complexity problem

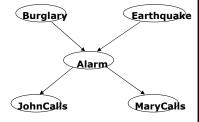
• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}\left(X_{1},X_{2},..,X_{n}\right)=\prod\;\mathbf{P}\left(X_{i}\mid pa\left(X_{i}\right)\right)$$

• What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:


$$2^5 = 32$$

One parameter is for free:

$$2^{5} - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

One parameter in every conditional is for free:

?

Parameter complexity problem

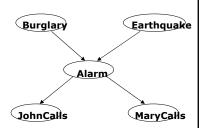
• In the BBN the **full joint distribution** is defined as:

$$\mathbf{P}(X_1, X_2, ..., X_n) = \prod_{i=1}^n \mathbf{P}(X_i \mid pa(X_i))$$

• What did we save?

Alarm example: 5 binary (True, False) variables

of parameters of the full joint:


$$2^5 = 32$$

One parameter is for free:

$$2^5 - 1 = 31$$

of parameters of the BBN:

$$2^3 + 2(2^2) + 2(2) = 20$$

One parameter in every conditional is for free:

$$2^2 + 2(2) + 2(1) = 10$$

CS 2750 Machine Learning

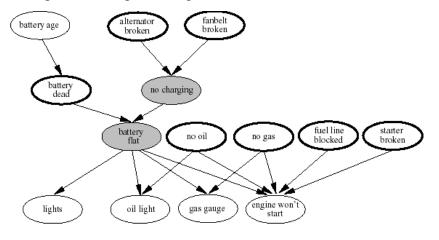
Model acquisition problem

The structure of the BBN typically reflects causal relations

- BBNs are also sometime referred to as causal networks
- Causal structure is very intuitive in many applications domain and it is relatively easy to obtain from the domain expert

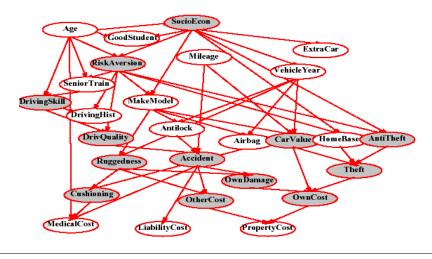
Probability parameters of BBN correspond to conditional distributions relating a random variable and its parents only

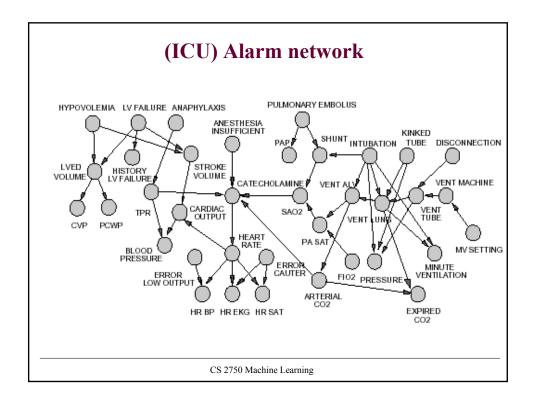
- Their complexity much smaller than the full joint
- Easier to come up (estimate) the probabilities from expert or automatically by learning from data


BBNs built in practice

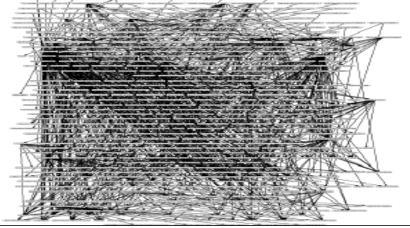
- In various areas:
 - Intelligent user interfaces (Microsoft)
 - Troubleshooting, diagnosis of a technical device
 - Medical diagnosis:
 - Pathfinder (Intellipath)
 - CPSC
 - Munin
 - QMR-DT
 - Collaborative filtering
 - Military applications
 - Insurance, credit applications

CS 2750 Machine Learning


Diagnosis of car engine

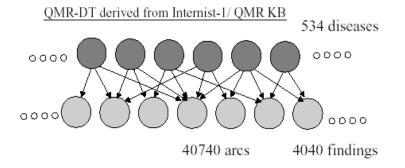

• Diagnose the engine start problem

Car insurance example


• Predict claim costs (medical, liability) based on application data

CPCS

- Computer-based Patient Case Simulation system (CPCS-PM) developed by Parker and Miller (at University of Pittsburgh)
- 422 nodes and 867 arcs



CS 2750 Machine Learning

QMR-DT

• Medical diagnosis in internal medicine

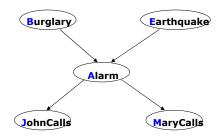
Bipartite network of disease/findings relations

CS 2750 Machine Learning

- BBN models compactly the full joint distribution by taking advantage of existing independences between variables
- Simplifies the acquisition of a probabilistic model
- But we are interested in solving various **inference tasks**:
 - Diagnostic task. (from effect to cause)

 $\mathbf{P}(Burglary \mid JohnCalls = T)$

- Prediction task. (from cause to effect)


 $\mathbf{P}(JohnCalls \mid Burglary = T)$

- Other probabilistic queries (queries on joint distributions).
 P(Alarm)
- Main issue: Can we take advantage of independences to construct special algorithms and speeding up the inference?

CS 2550 Staghing Lecanning

Inference in Bayesian network

- Bad news:
 - Exact inference problem in BBNs is NP-hard (Cooper)
 - Approximate inference is NP-hard (Dagum, Luby)
- But very often we can achieve significant improvements
- Assume our Alarm network

• Assume we want to compute: P(J = T)

CS 2550 344 chine to earning

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: ? Number of products: ?

CS 2650 34 aghine Localning

Inference in Bayesian networks

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- · express the joint distribution as a product of conditionals

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: 15 Number of products: ?

CS 2550 \$4 achine to earning

Computing: P(J = T)

Approach 1. Blind approach.

- Sum out all un-instantiated variables from the full joint,
- express the joint distribution as a product of conditionals

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(B = b, E = e, A = a, J = T, M = m)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

Computational cost:

Number of additions: 15

Number of products: 16*4=64

CS 2050 Staghing Localining

Inference in Bayesian networks

Approach 2. Interleave sums and products

• Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[\sum_{m \in T, F} P(M = m \mid A = a) \right] \left[\sum_{b \in T, F} P(B = b) \left[\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right] \right]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=? Number of products: 2*[2+2*(1+2*1)]=?

CS 2550 Staching to Aming

Approach 2. Interleave sums and products

 Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) [\sum_{m \in T, F} P(M = m \mid A = a)] [\sum_{b \in T, F} P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=9Number of products: 2*[2+2*(1+2*1)]=?

CS 2650 \$4 aghins locatining

Inference in Bayesian networks

Approach 2. Interleave sums and products

• Combines sums and product in a smart way (multiplications by constants can be taken out of the sum)

$$P(J=T)=$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(B = b) [\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e)]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[\sum_{m \in T, F} P(M = m \mid A = a) \right] \left[\sum_{b \in T, F} P(B = b) \left[\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right] \right]$$

Computational cost:

Number of additions: 1+2*[1+1+2*1]=9 Number of products: 2*[2+2*(1+2*1)]=16

CS 2550 344 chine to earning

- When cashing of results becomes handy?
- What if we want to compute a diagnostic query:

$$P(B = T \mid J = T) = \frac{P(B = T, J = T)}{P(J = T)}$$

- Exactly probabilities we have just compared!!
- There are other queries when cashing and ordering of sums and products can be shared and saves computation

$$\mathbf{P}(B \mid J = T) = \frac{\mathbf{P}(B, J = T)}{P(J = T)} = \alpha \mathbf{P}(B, J = T)$$

• General technique: Recursive decomposition

CS 2550 Machine Locatining

Variable elimination

- Recursive decomposition:
 - Interleave sum and products before inference
- Variable elimination:
 - Similar idea but interleave sum and products one variable at the time during inference
 - E.g. Query P(J = T) requires to eliminate A,B,E,M and this can be done in different order

$$P(J = T) = \sum_{b \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

CS 2550 Stachine to Aming

Variable elimination

Assume order: M, E, B,A to calculate P(J = T)

$$= \sum_{b \in T, F} \sum_{a \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} \sum_{m \in T, F} P(J = T \mid A = a) P(M = m \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e) \left[\sum_{m \in T, F} P(M = m \mid A = a) \right]$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T, F} \sum_{e \in T, F} \sum_{a \in T, F} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{b \in T} \sum_{F} \sum_{a \in T} P(J = T \mid A = a) P(A = a \mid B = b, E = e) P(B = b) P(E = e)$$

$$= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T \mid A = a) P(B = b) \left[\sum_{e \in T, F} P(A = a \mid B = b, E = e) P(E = e) \right]$$

$$= \sum_{T \in I} \sum_{T \in I} P(J = T \mid A = a) P(B = b) \tau_1(A = a, B = b)$$

$$= \sum_{a \in T, F} \sum_{b \in T, F} P(J = T \mid A = a) P(B = b) \tau_1(A = a, B = b)$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \left[\sum_{e \in T, F} P(B = b) \tau_1(A = a, B = b) \right]$$

$$= \sum_{a \in T, F} P(J = T \mid A = a) \quad \tau_2(A = a)$$

Inference in Bayesian network

- Exact inference algorithms:

- Variable elimination

- Book
- Recursive decomposition (Cooper, Darwiche)
- Symbolic inference (D'Ambrosio)
- Belief propagation algorithm (Pearl)
- Book
- Clustering and joint tree approach (Lauritzen, Spiegelhalter)
- Arc reversal (Olmsted, Schachter)
- **Approximate inference algorithms:**
- Monte Carlo methods:
 - Forward sampling, Likelihood sampling
- Variational methods

CS 2550 344 ohine to Anning

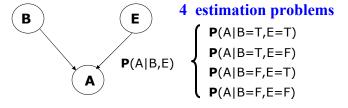
Learning of BBN

Learning.

- Learning of parameters of conditional probabilities
- Learning of the network structure

Variables:

- **Observable** values present in every data sample
- Hidden they values are never observed in data
- **Missing values** values sometimes present, sometimes not


Next:

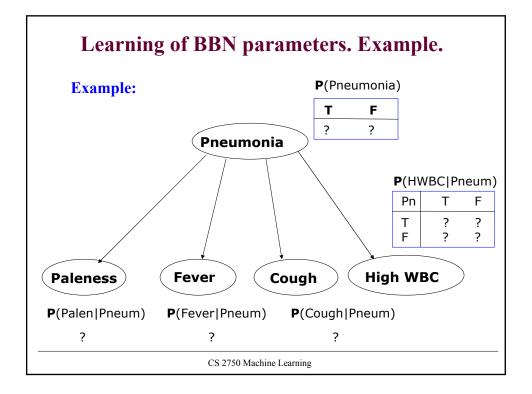
- Learning of parameters of BBN
- All variables are observable

CS 2750 Machine Learning

Estimation of parameters of BBN

- Idea: decompose the estimation problem for the full joint over a large number of variables to a set of smaller estimation problems corresponding to local parent-variable conditionals.
- Example: Assume A,E,B are binary with *True*, *False* values

• Assumption that enables the decomposition: parameters of conditional distributions are independent


Estimates of parameters of BBN

- Two assumptions that permit the decomposition:
 - Sample independence

$$P(D \mid \mathbf{\Theta}, \xi) = \prod_{u=1}^{N} P(D_u \mid \mathbf{\Theta}, \xi)$$

- Parameter independence # of nodes $p(\mathbf{\Theta} \mid D, \xi) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} p(\theta_{ij} \mid D, \xi)$

Parameters of **each conditional** (one for every assignment of values to parent variables) can be learned independently

Learning of BBN parameters. Example.

Data D (different patient cases):

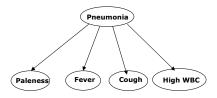
F

 Pal
 Fev
 Cou HWB
 Pneu

 T
 T
 T
 F

 T
 F
 F
 F

 F
 F
 T
 T
 T


 F
 T
 T
 T
 T
 T

 F
 T
 T
 F
 F
 F

 F
 F
 F
 F
 F
 F

 T
 T
 T
 T
 T
 T

 F
 T
 F
 T
 T
 T

CS 2750 Machine Learning

Estimates of parameters of BBN

- Much like multiple coin toss or roll of a dice problems.
- A "smaller" learning problem corresponds to the learning of exactly one conditional distribution
- Example:

T

$$\mathbf{P}(Fever \mid Pneumonia = T)$$

• **Problem:** How to pick the data to learn?

Estimates of parameters of BBN

Much like multiple coin toss or roll of a dice problems.

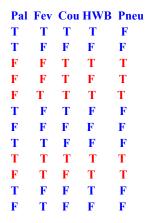
• A "smaller" learning problem corresponds to the learning of exactly one conditional distribution

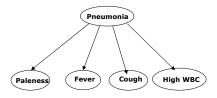
Example:

 $\mathbf{P}(Fever \mid Pneumonia = T)$

Problem: How to pick the data to learn?

Answer:

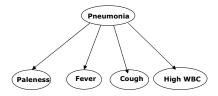

- Select data points with Pneumonia=T (ignore the rest)
- 2. Focus on (select) only values of the random variable defining the distribution (Fever)
- 3. Learn the parameters of the conditional the same way as we learned the parameters for a coin or a dice


CS 2750 Machine Learning

Learning of BBN parameters. Example.

Learn: $P(Fever \mid Pneumonia = T)$

Step 1: Select data points with Pneumonia=T


Learning of BBN parameters. Example.

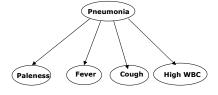
Learn: $P(Fever \mid Pneumonia = T)$

Step 1: Ignore the rest

Pal Fev Cou HWB Pneu

F	F	T	T	T	
F	F	T	F	T	
F	T	T	T	T	
T	T	T	T	T	
-	-	-	-	-	

CS 2750 Machine Learning

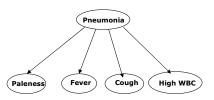

Learning of BBN parameters. Example.

Learn: $P(Fever \mid Pneumonia = T)$

Step 2: Select values of the random variable defining the distribution of Fever

Pal Fev Cou HWB Pneu

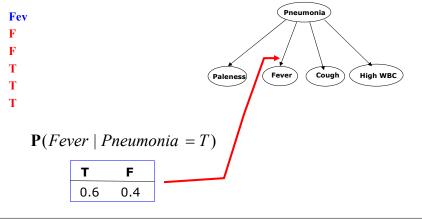
F	F	T	T	T
F	\mathbf{F}	T	F	T
F	T	T	T	T
T	T	T	T	T
F	T	F	T	T



Learning of BBN parameters. Example.

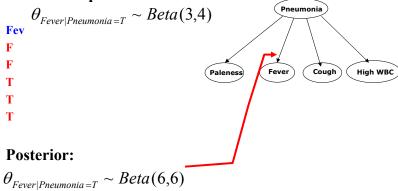
Learn: $P(Fever \mid Pneumonia = T)$

Step 2: Ignore the rest



CS 2750 Machine Learning

Learning of BBN parameters. Example.


Learn: $P(Fever \mid Pneumonia = T)$ **Step 3a:** Learning the ML estimate

Step 3b: Learning the Bayesian estimate

Assume the prior

