CS 2750 Machine Learning Lecture 11

Multi-way classification. Decision trees.

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Multi-way classification

- **Binary classification** $Y = \{0,1\}$
- Multi-way classification
 - **K classes** $Y = \{0,1,\dots,K-1\}$
 - Goal: learn to classify correctly K classes
 - Or **learn** $f: X \to \{0,1,...,K-1\}$
- Errors:
 - Zero-one (misclassification) error for an example:

Error₁(
$$\mathbf{x}_i, y_i$$
) =
$$\begin{cases} 1 & f(\mathbf{x}_i, \mathbf{w}) \neq y_i \\ 0 & f(\mathbf{x}_i, \mathbf{w}) = y_i \end{cases}$$

- Mean misclassification error (for a dataset):

$$\frac{1}{n} \sum_{i=1}^{n} Error_{1}(\mathbf{x}_{i}, y_{i})$$

Multi-way classification

Approaches:

- Generative model approach
 - Generative model of the distribution p(x,y)
 - Learns the parameters of the model through density estimation techniques
 - Discriminant functions are based on the model
 - "Indirect" learning of a classifier
- Discriminative approach
 - Parametric discriminant functions
 - Learns discriminant functions directly
 - A logistic regression model.

CS 2750 Machine Learning

Generative model approach

Indirect:

- 1. Represent and learn the distribution $p(\mathbf{x}, y)$
- 2. Define and use probabilistic discriminant functions

$$g_i(\mathbf{x}) = \log p(y = i \mid \mathbf{x})$$

Model $p(\mathbf{x}, y) = p(\mathbf{x} \mid y) p(y)$

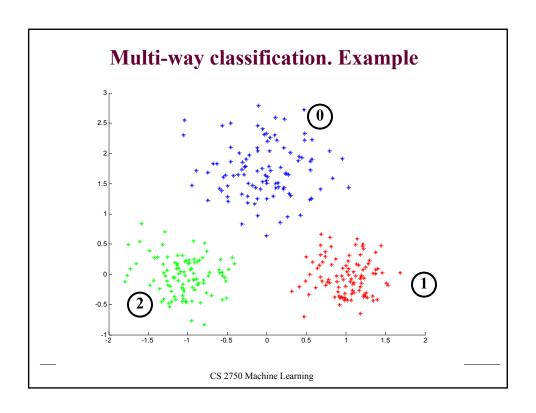
• $p(\mathbf{x} \mid y)$ = Class-conditional distributions (densities)

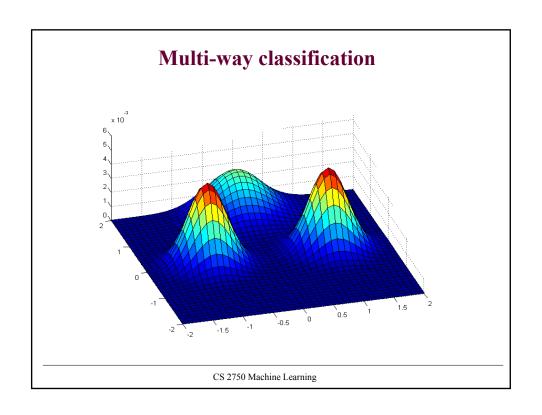
k class-conditional distributions

$$p(\mathbf{x} \mid y = i)$$
 $\forall i \quad 0 \le i \le K - 1$

- p(y) =Priors on classes
- probability of class y

$$\sum_{i=1}^{K-1} p(y=i) = 1$$





Making class decision

Discriminant functions can be based on:

• Likelihood of data – choose the class (Gaussian) that explains the input data (x) better (likelihood of the data)

Choice:
$$i = \underset{i=0,...k-1}{\arg \max} p(\mathbf{x} \mid \mathbf{\theta}_i)$$

 $p(\mathbf{x} \mid \mathbf{\theta}_i) \approx p(\mathbf{x} \mid \mu_i, \Sigma_i)$ For Gaussians

Posterior of a class – choose the class with higher posterior probability

Choice:
$$i = \underset{i=0,\dots,k-1}{\operatorname{arg \ max}} \ p(y = i \mid \mathbf{x}, \mathbf{\theta}_i)$$
$$p(y = i \mid \mathbf{x}) = \frac{p(\mathbf{x} \mid \Theta_i) p(y = i)}{\sum_{j=0}^{k-1} p(\mathbf{x} \mid \Theta_j) p(y = j)}$$

CS 2750 Machine Learning

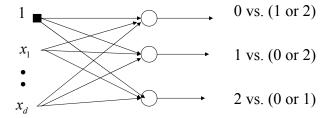
Discriminative approach

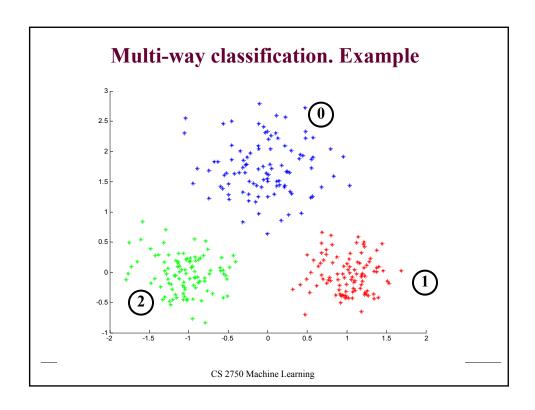
- Parametric model of discriminant functions
- Learns the discriminant functions directly

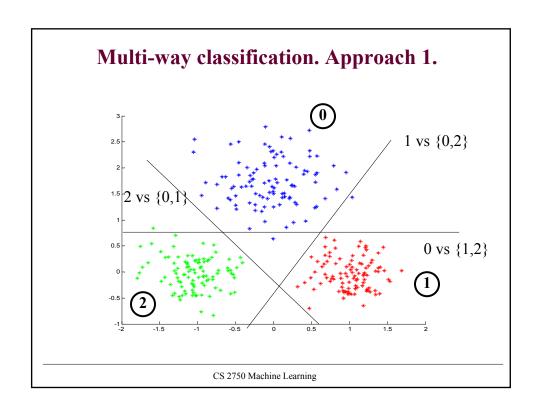
How to learn to classify multiple classes, say 0,1,2?

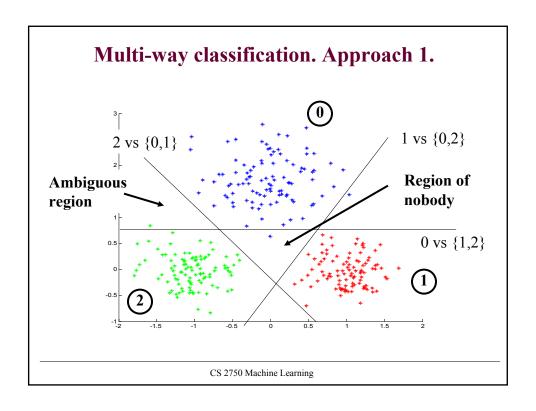
Approach 1:

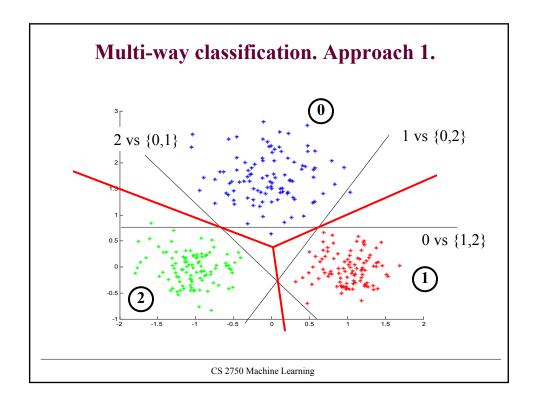
- A binary logistic regression on every class versus the rest









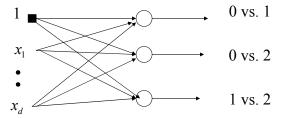


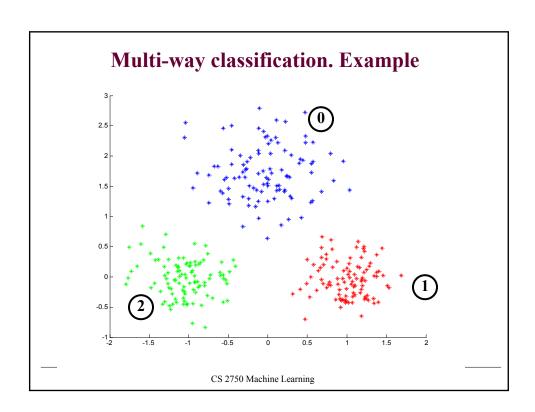
Discriminative approach.

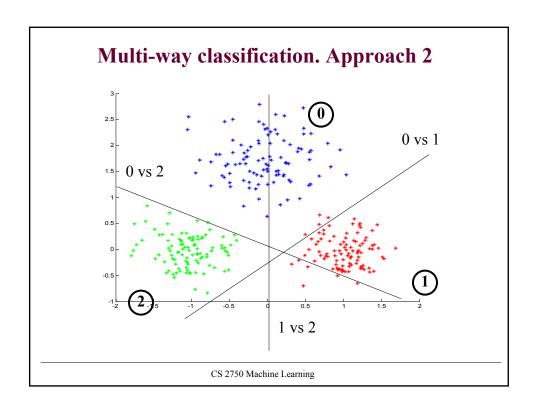
How to learn to classify multiple classes, say 0,1,2?

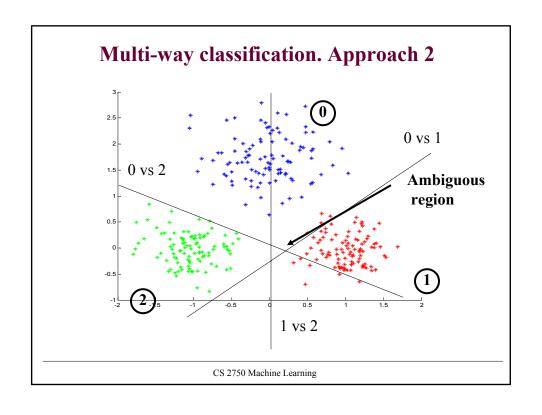
Approach 2:

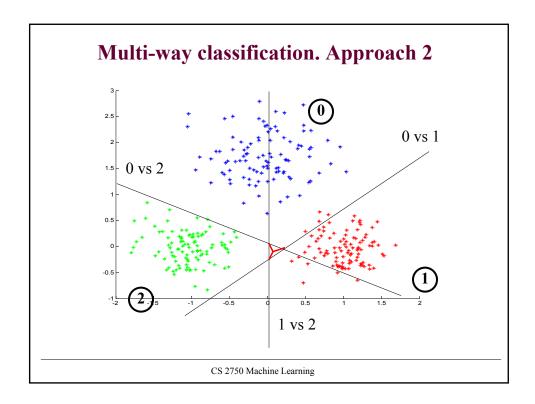
- A binary logistic regression on all pairs





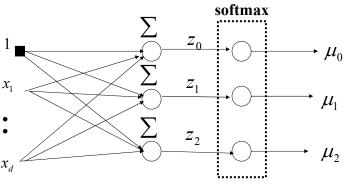




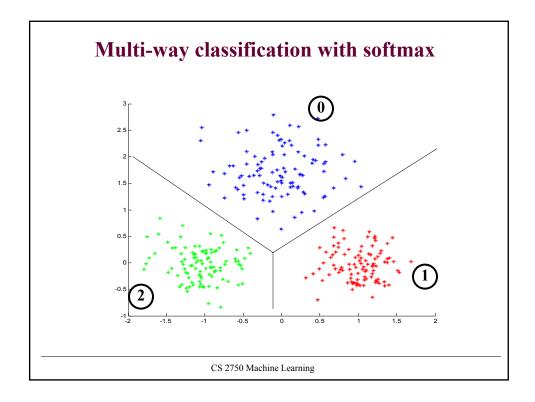


Multi-way classification with softmax

• A solution to the problem of having an ambiguous region

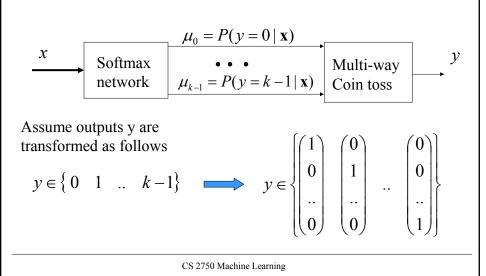


$$p(y = i \mid \mathbf{x}) = \mu_i = \frac{\exp(\mathbf{w}_i^T \mathbf{x})}{\sum_j \exp(\mathbf{w}_j^T \mathbf{x})} \qquad \sum_i \mu_i = 1$$



Learning of the softmax model

• Learning of parameters w: statistical view



Learning of the softmax model

- Learning of the parameters w: statistical view
- Likelihood of outputs

$$L(D, \mathbf{w}) = p(\mathbf{Y} \mid \mathbf{X}, w) = \prod_{i=1}^{n} p(y_i \mid \mathbf{x}_i, \mathbf{w})$$

- We want parameters w that maximize the likelihood
- Log-likelihood trick
 - Optimize log-likelihood of outputs instead:

$$l(D, \mathbf{w}) = \log \prod_{i=1,..n} p(y_i \mid \mathbf{x}, \mathbf{w}) = \sum_{i=1,..n} \log p(y_i \mid \mathbf{x}, \mathbf{w})$$
$$= \sum_{i=1} \sum_{n=0}^{k-1} \log \mu_i^{y_{i,q}} = \sum_{i=1} \sum_{n=0}^{k-1} y_{i,q} \log \mu_{i,q}$$

• Objective to optimize $J(D_i, \mathbf{w}) = -\sum_{i=1}^n \sum_{q=0}^{k-1} y_{i,q} \log \mu_{i,q}$

CS 2750 Machine Learning

Learning of the softmax model

• Error to optimize:

$$J(D_i, \mathbf{w}) = -\sum_{i=1}^{n} \sum_{q=0}^{k-1} y_{i,q} \log \mu_{i,q}$$

Gradient

$$\frac{\partial}{\partial w_{jq}} J(D_i, \mathbf{w}) = \sum_{i=1}^n -x_{i,j} (y_{i,q} - \mu_{i,q})$$

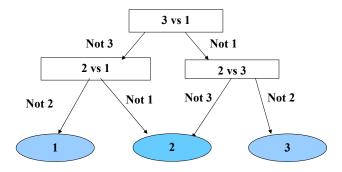
• The same very easy **gradient update** as used for the binary logistic regression

$$\mathbf{w}_{q} \leftarrow \mathbf{w}_{q} + \alpha \sum_{i=1}^{n} (y_{i,q} - \mu_{i,q}) \mathbf{x}_{i}$$

• But now we have to update the weights of k networks

Multi-way classification

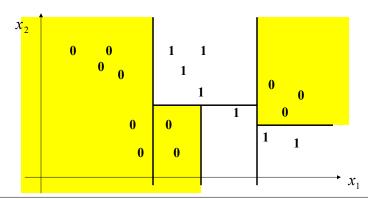
• Yet another approach 3



CS 2750 Machine Learning

Decision trees

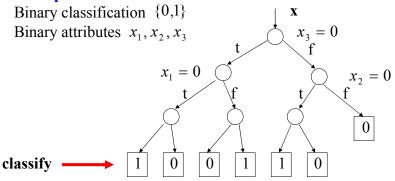
- An alternative approach to classification:
 - Partition the input space to regions
 - Regress or classify independently in every region



Decision trees

- The partitioning idea is used in the **decision tree model**:
 - Split the space recursively according to inputs in x
 - Regress or classify at the bottom of the tree

Example:

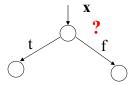


CS 2750 Machine Learning

Decision trees

How to construct the decision tree?

- Top-bottom algorithm:
 - Find the best split condition (quantified based on the impurity measure)
 - Stops when no improvement possible



- Impurity measure:
 - Measures how well are the two classes separated
 - Ideally we would like to separate all 0s and 1
- Splits of finite vs. continuous value attributes Continuous value attributes conditions: $x_3 \le 0.5$

Impurity measure

Let |D| - Total number of data entries

 $|D_i|$ - Number of data entries classified as i

$$p_i = \frac{|D_i|}{|D|}$$
 - ratio of instances classified as *i*

- Impurity measure defines how well the classes are separated
- In general the impurity measure should satisfy:
 - Largest when data are split evenly for attribute values

$$p_i = \frac{1}{\text{number of classes}}$$

- Should be 0 when all data belong to the same class

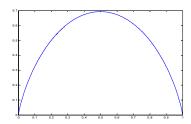
CS 2750 Machine Learning

Impurity measures

- There are various impurity measures used in the literature
 - Entropy based measure (Quinlan, C4.5)

$$I(D) = Entropy (D) = -\sum_{i=1}^{k} p_i \log p_i$$

Example for k=2



- Gini measure (Breiman, CART)

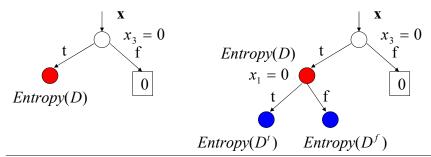
$$I(D) = Gini(D) = 1 - \sum_{i=1}^{k} p_i^2$$

Impurity measures

• Gain due to split – expected reduction in the impurity measure (entropy example)

$$Gain(D, A) = Entropy(D) - \sum_{v \in Values(A)} \frac{|D^{v}|}{|D|} Entropy(D^{v})$$

 $|D^{v}|$ - a partition of D with the value of attribute A = v



CS 2750 Machine Learning

Decision tree learning

• Greedy learning algorithm:

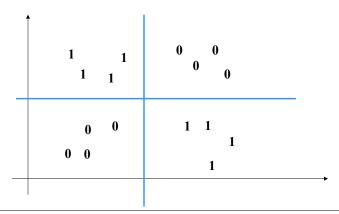
Repeat until no or small improvement in the purity

- Find the attribute with the highest gain
- Add the attribute to the tree and split the set accordingly
- Builds the tree in the top-down fashion
 - Gradually expands the leaves of the partially built tree
- The method is greedy
 - It looks at a single attribute and gain in each step
 - May fail when the combination of attributes is needed to improve the purity (parity functions)

Decision tree learning

· Limitations of greedy methods

Cases in which a combination of two or more attributes improves the impurity



CS 2750 Machine Learning

Decision tree learning

By reducing the impurity measure we can grow very large trees

Problem: Overfitting

• We may split and classify very well the training set, but we may do worse in terms of the generalization error

Solutions to the overfitting problem:

- Solution 1.
 - Prune branches of the tree built in the first phase
 - Use validation set to test for the overfit
- Solution 2.
 - Test for the overfit in the tree building phase
 - Stop building the tree when performance on the validation set deteriorates

K-Nearest-Neighbours for Classification

• Given a data set with N_k data points from class C_k and $\sum_{\pmb{k}} N_{\pmb{k}} = \pmb{N}$, we have

$$p(\mathbf{x}) = rac{K}{NV}$$

and correspondingly

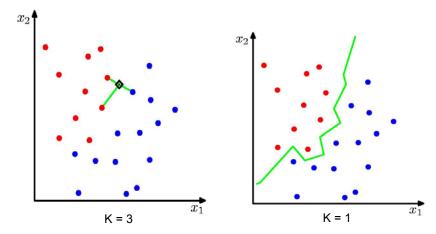
$$p(\mathbf{x}|\mathcal{C}_k) = \frac{K_k}{N_k V}.$$

• Since $p(C_k) = N_k/N$ Bayes' theorem gives

$$p(\mathcal{C}_k|\mathbf{x}) = rac{p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)}{p(\mathbf{x})} = rac{K_k}{K}.$$

CS 2750 Machine Learning

K-Nearest-Neighbours for Classification



Nonparametric kernel-based classification

- Kernel function: k(x,x')
 - Models similarity between x, x'
 - **Example:** Gaussian kernel we used in kernel density estimation

$$k(x, x') = \frac{1}{(2\pi h^2)^{D/2}} \exp\left(-\frac{(x-x')^2}{2h^2}\right)$$

$$p(x) = \frac{1}{N} \sum_{i=1}^{N} k(x, x_i)$$

· Kernel for classification

$$p(y = C_k \mid x) = \frac{\sum_{x':y'=C_k} k(x, x')}{\sum_{x'} k(x, x')}$$