CS 2750 Machine Learning

Lecture 1

Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

CS 2750 Machine Learning

Administration

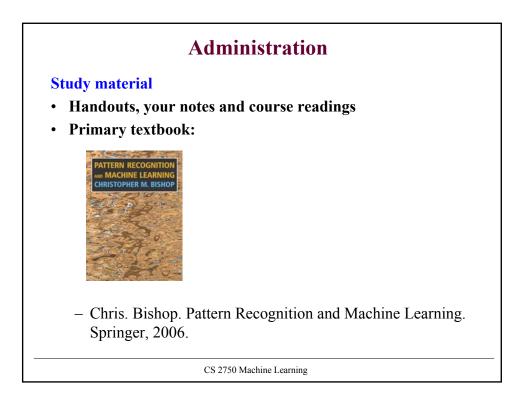
Instructor:

Milos Hauskrecht

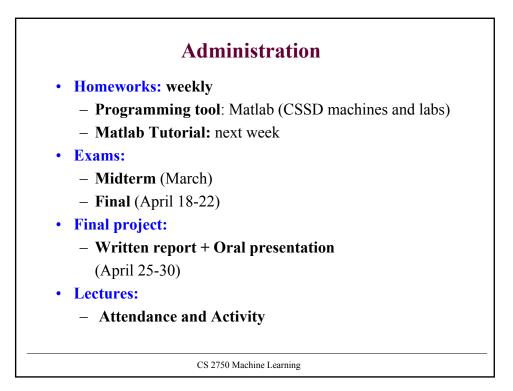
milos@cs.pitt.edu 5329 Sennott Square, x4-8845 **Office hours:** TBA

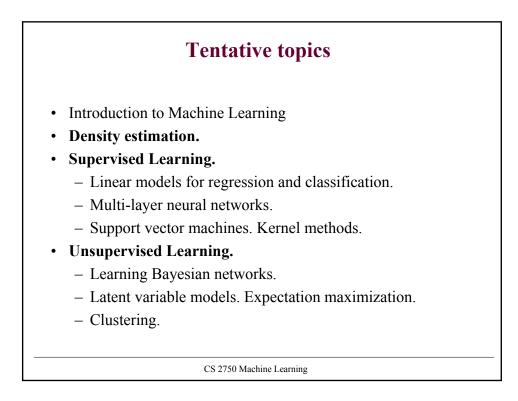
TA:

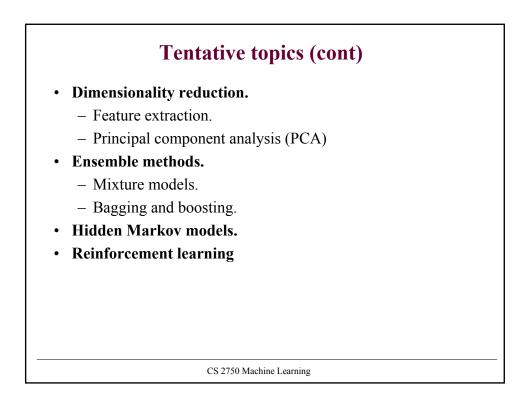
Michael Moeng moeng@cs.pitt.edu 5802 Sennott Square Office hours: TBA

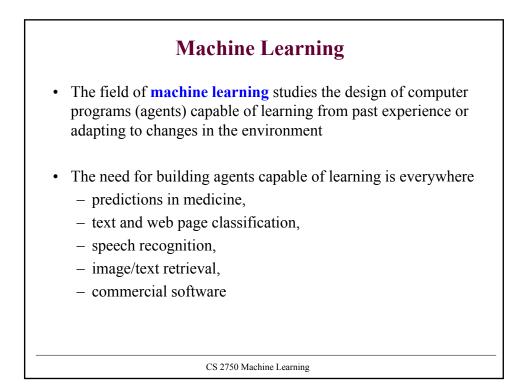


Administration	
Study material	
Other books:	
 Friedman, Hastie, Tibshirani. I learning. Springer, 2001. 	Elements of statistical
 Duda, Hart, Stork. Pattern class Wiley and Sons, 2000. 	sification. 2 nd edition. J
 C. Bishop. Neural networks for U. Press, 1996. 	r pattern recognition. Oxford
– T. Mitchell. Machine Learning	. McGraw Hill, 1997
– J. Han, M. Kamber. Data Mini	ng. Morgan Kauffman, 2001.
CS 2750 Machine Le	









Learning

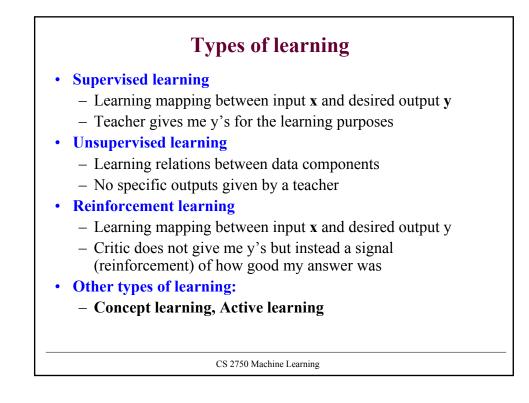
Learning process:

Learner (a computer program) processes data **D** representing past experiences and tries to either develop an appropriate response to future data, or describe in some meaningful way the data seen

Example:

Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:

- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms



Supervised learning

Data: D = {d₁, d₂,...,d_n} a set of n examples d_i =< x_i, y_i >
x_i is input vector, and y is desired output (given by a teacher)
Objective: learn the mapping f : X → Y s.t. y_i ≈ f(x_i) for all i = 1,..., n
Two types of problems:
Regression: X discrete or continuous → Y is continuous
Classification: X discrete or continuous → Y is discrete



Unsupervised learning

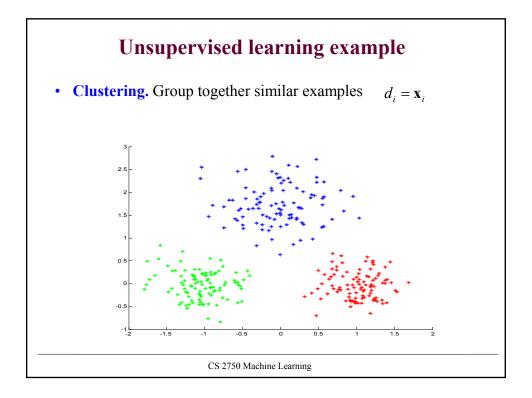
• **Data:** $D = \{d_1, d_2, ..., d_n\}$ $d_i = \mathbf{x}_i$ vector of values No target value (output) y

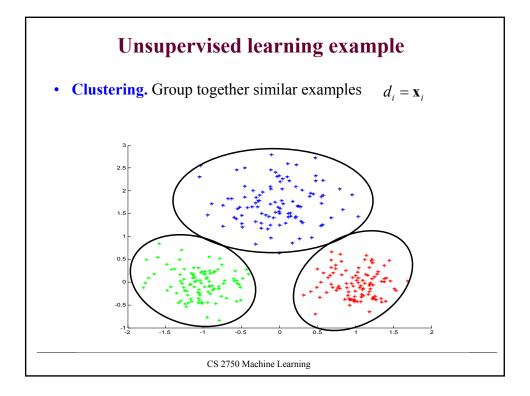
Objective: - learn relations between samples, components of samples

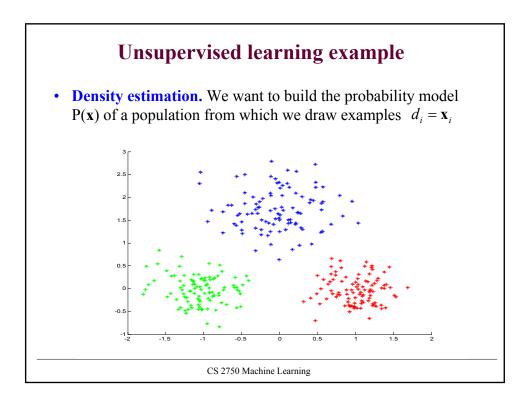
Types of problems:

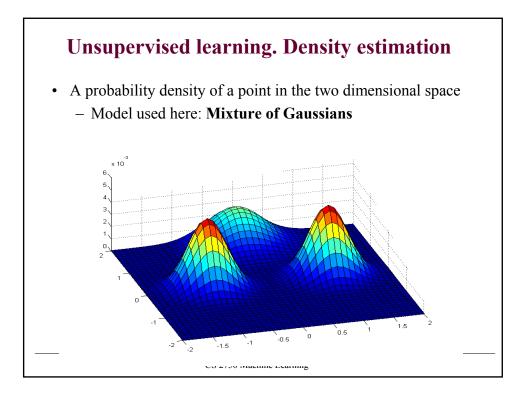
٠

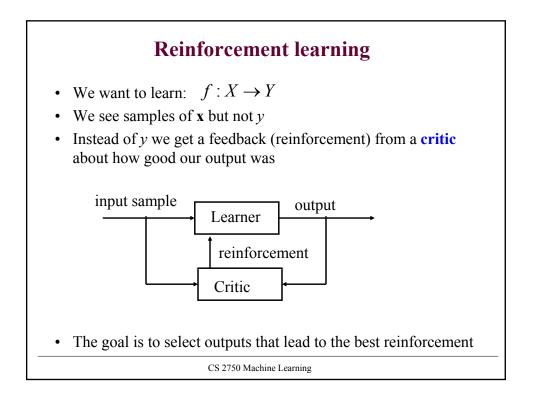
- **Clustering** Group together "similar" examples, e.g. patient cases
- Density estimation
 - Model probabilistically the population of samples





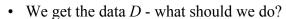


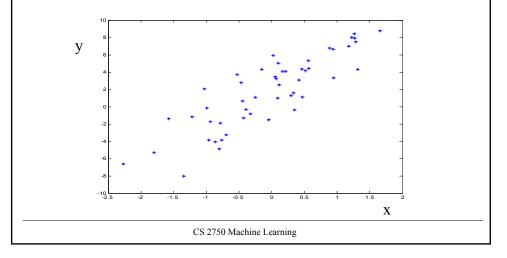


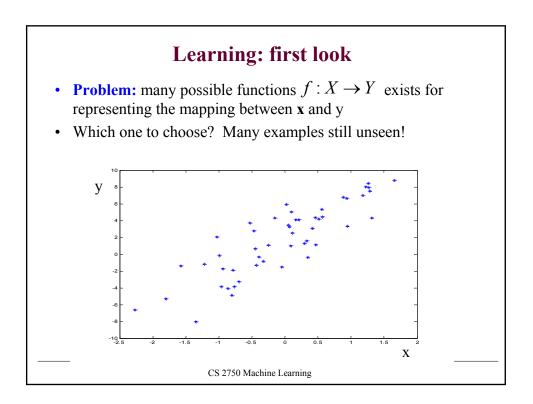


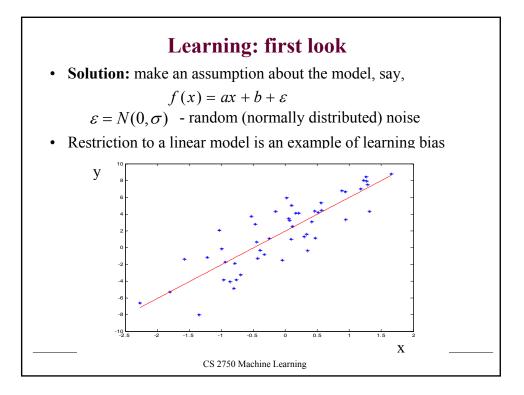
Learning: first look

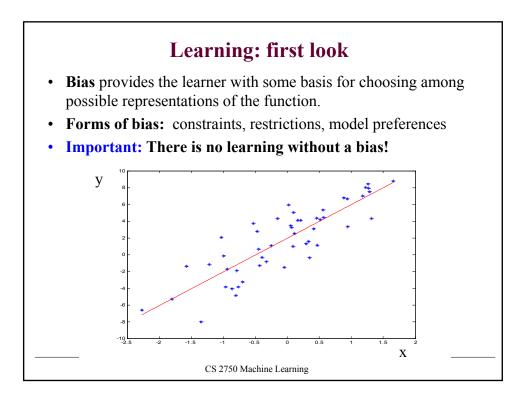
• Assume we see examples of pairs (\mathbf{x}, y) in *D* and we want to learn the mapping $f : X \to Y$ to predict y for some future \mathbf{x}

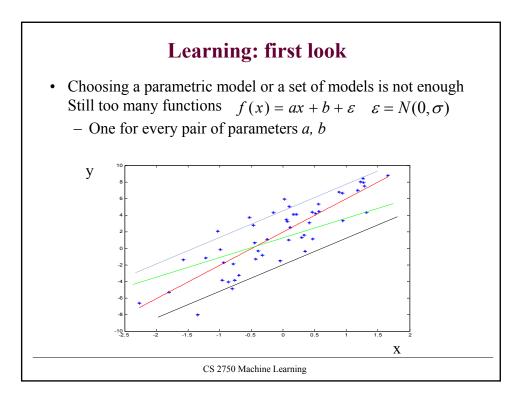


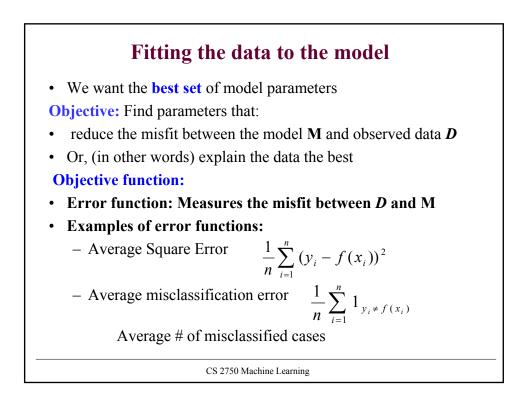


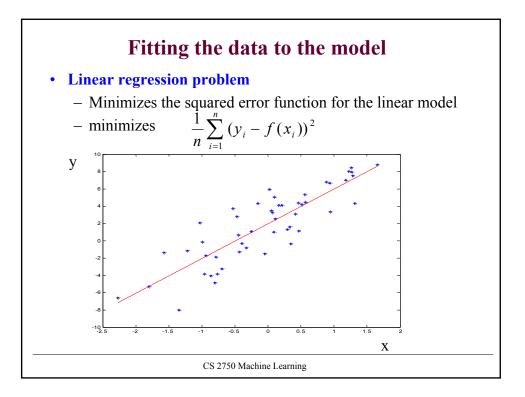


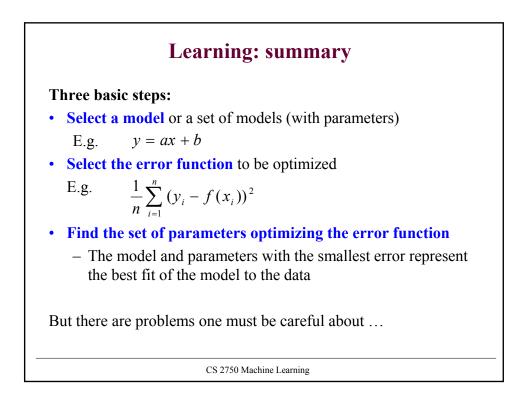












Learning

Problem

- We fit the model based on past experience (past examples seen)
- But ultimately we are interested in learning the mapping that performs well on the whole population of examples

Training data: Data used to fit the parameters of the model Training error: $\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$

 $n_{\overline{i=1}}$ **True (generalization) error** (over the whole unknown

population):

 $E_{(x,y)}[(y-f(x))^2]$ Mean squared error

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error ?

CS 2750 Machine Learning

Learning

Problem

- We fit the model based on past examples observed in **D**
- But ultimately we are interested in learning the mapping that performs well on the whole population of examples

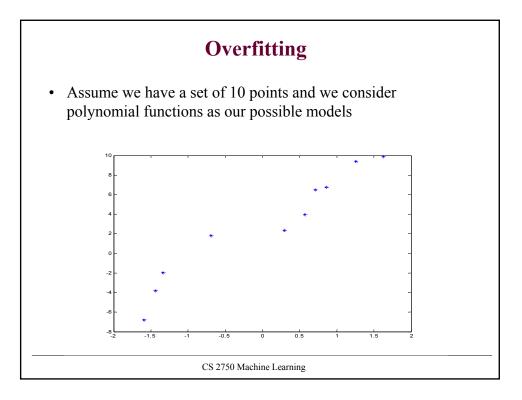
Training data: Data used to fit the parameters of the model **Training error:** $1 \frac{n}{2}$

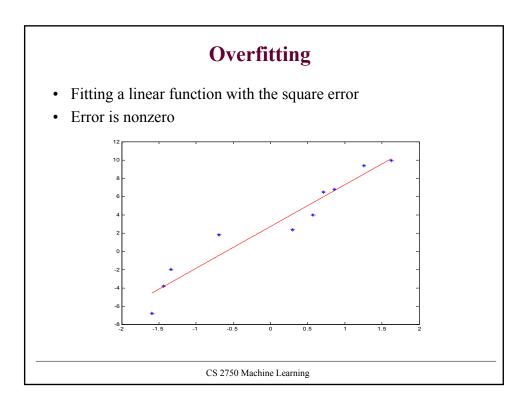
Error
$$(D, f) = \frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

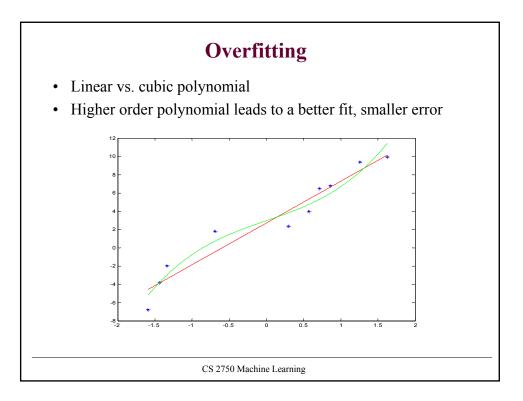
True (generalization) error (over the whole population):

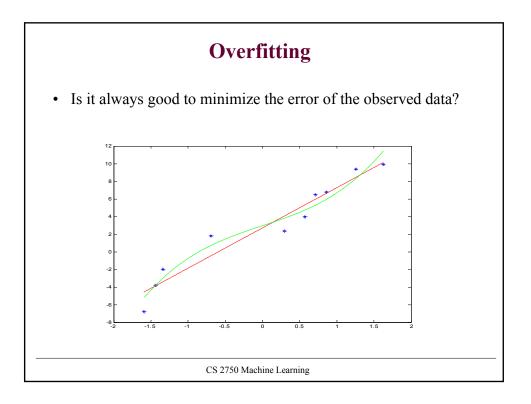
 $E_{(x,y)}[(y-f(x))^2]$ Mean squared error

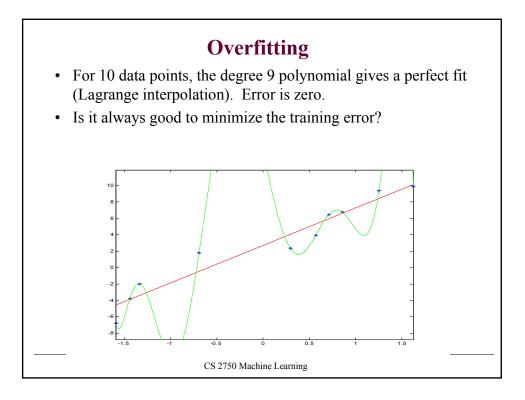
Training error tries to approximate the true error !!!! Does a good training error imply a good generalization error ?

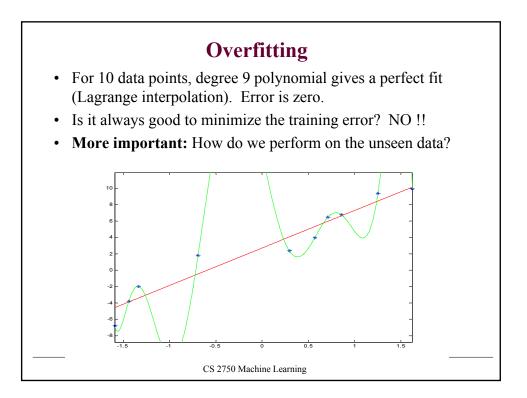


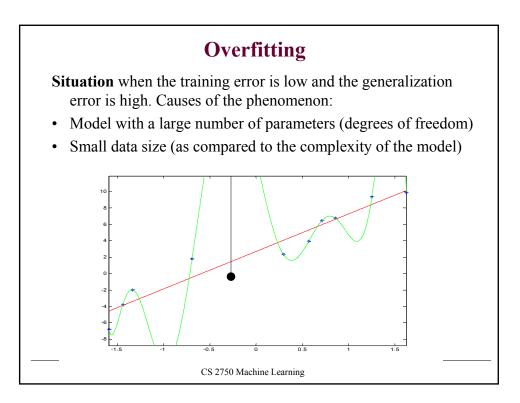


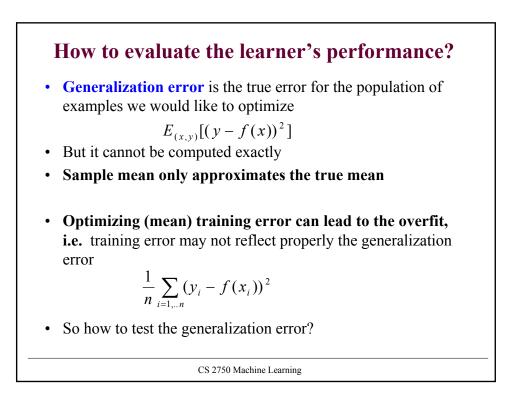


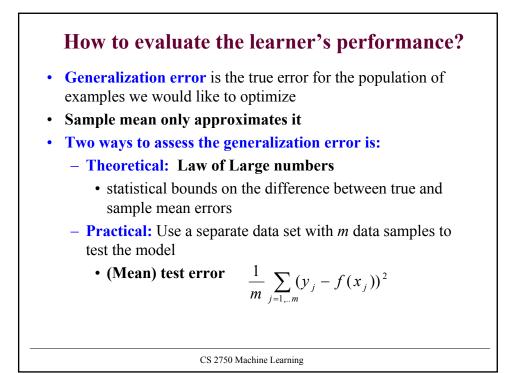












Basic experimental setup to test the learner's performance

- 1. Take a dataset D and divide it into:
 - Training data set
 - Testing data set
- 2. Use the training set and your favorite ML algorithm to train the learner
- 3. Test (evaluate) the learner on the testing data set
- The results on the testing set can be used to compare different learners powered with different models and learning algorithms