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Linear regression

* Function f:X —Y isalinear combination of input

components

d
J(X)=w, +wx;, + WX, +..w,x, =w, + ZW_/.xj
j=1

Wy, Wy,... W, - parameters (weights)

Bias term —— 1

Input vector <
X °
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Linear regression. Error.

* Data: D =<x,y, >
 Function: x, > f(X,)
* We would like to have v, ~ f(x;,) forall i=1,..,n

e Error function

— measures how much our predictions deviate from the
desired answers

1
Mean-squared error J, = — z (v, — f(x,)°
i=l,.n
* Learning:
We want to find the weights minimizing the error !
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Linear regression. Example

* 1 dimensional input X =(x,)
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Linear regression. Example.

* 2 dimensional input x = (x,, x,)
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Solving linear regression

» The optimal set of weights satisfies:
Vo, (W) =23 (- wTx)x, = 0
n o

Leads to a system of linear equations (SLE) with d+/
unknowns of the form

/ Aw=Db
n

woz)c0 +w12x1 . +qu X+ +wd2x,d =2
i=1 i=1

Solution to SLE: 7
w=A"b

e matrix inversion
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Gradient descent solution

Goal: the weight optimization in the linear regression model
J, = Error (w) = 1— Z (v, - f(xi,w))z
n i=1l,.n
Iterative solution:
* Gradient descent (first order method)
Idea:
— Adjust weights in the direction that improves the Error
— The gradient tells us what is the right direction

W<« w-aV _ Error,(w)

a >0 - alearning rate (scales the gradient changes)
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Gradient descent method

» Descend using the gradient information

Error (w) VvV, Error (w)|,.

W F— w
Direction of the descent
* Change the value of w according to the gradient

W w-aV Error,(w)
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Gradient descent method

* [Iteratively approaches the optimum of the Error function

Error(w)
w (@3 (D, (2}, (3) w
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Online gradient method
Linear model f(x)=w'x

On-line error I oiine = Error,(w) = E(yi - f(x,,w))’

On-line algorithm: generates a sequence of online updates
(i)-th update step with: D =<x,y >

j-th weight: " - . OError (w)
w, e w o —a(l) ————— | o
. : ow . W
J

©) (i-1) . j—
w, " ew T ra)y, - f(x W),

J J
. . : . N
Fixed learning rate: o(i)=C Annealed learning rate: a(i)~-
i
- Use a small constant - Gradually rescales changes
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On-line learning. Example
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Extensions of simple linear model

Replace inputs to linear units with feature (basis) functions
to model nonlinearities

£ = w0+ 2w, (%)

¢j (x) - anarbitrary function of x
1

The same techniques as before to learn the weights
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Additive linear models

* Models linear in the parameters we want to fit
S(x)=w, + z WP (X)
k=1

Wy, Wi...W, - parameters
$,(Xx), §,(X)...4, (X) - feature or basis functions
* Basis functions examples:
— a higher order polynomial, one-dimensional input x = (x,)
P (x)=x ¢2(x):x2 ¢3(x)=x3
— Multidimensional quadratic X = (x, x,)
2
$(x) = x, 9, (X) = x| $5(x) = x, P,(x) = x22 Ps(X) = x,x,
— Other types of basis functions

¢, (x)=sin x ¢,(x)=cosx
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Fitting additive linear models

« Error function J,(W)=1/n) (y— f(x,))’

i=l,.n

Assume: (p(xi):(1a¢1(xi)’¢2(xi)a""¢m(xi))
—% S - S (x) =0

i=l,.n

v w J)‘I (W ) =
* Leads to a system of m linear equations
Wozlllciﬁj (X)) +... 4w, Zlklfj (X, (%) +... 4w, D 4, (%), (%) =D 3¢ (x)
i i= i=1 i=1

+ Can be solved exactly like the linear case
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Example. Regression with polynomials.

Regression with polynomials of degree m

* Data points: pairs of < x,y >

* Feature functions: m feature functions
$.(x) =x' i=12,....,m

* Function to learn:

FCaW) =y + 3w (1) = wy + D
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Learning with feature functions.

Function to learn: .
S W) =wy+ 3w (x)
i=1
On line gradient update for the <x,y> pair
wy =wy +a(y—f(x,w))

w; =w; +a(y—f(xX,w))g,(x)

Gradient updates are of the same form as in the linear and logistic

regression models
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Example. Regression with polynomials.

Example: Regression with polynomials of degree m
S, W) =w, + Z w,p,(x) =w, + z Wixi
i=1 i=1

* On line update for <x,y> pair

wy = w, +a(y = f(x,w))

w,=w, +a(y— f(x,w)x’
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Multidimensional additive model example
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Multidimensional additive model example

P Y A S T e
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Statistical model of regression

* A generative model: y= f(x,w)+¢
f(x,w) is a deterministic function

& 1s arandom noise , it represents things we cannot capture
with f(x,w) ,e.g. &~ N(©, o?)
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Statistical model of regression

* Assume a generative model:
y=f(x,w)+¢

where  f(x,w)=w'x isalinear model,

and & ~N(, c?)

+ Then: f(x,w)=E(y|x)
— models the mean of outputs y for X
— and the noise & models deviations from the mean

* The model defines the conditional density of y given X,w,o

P X W,0) = G\}Eexp{—;?(y— f(x,W))z}
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ML estimation of the parameters

* likelihood of predictions = the probability of observing
outputs y in D given w, o and xs

L(D,W,O') = H P(y, | Xl»,W,O')
i=1
* Maximum likelihood estimation of parameters
— parameters maximizing the likelihood of predictions
w' =argmax [| p(y, |x,,W,0)
w i=1
* Log-likelihood trick for the ML optimization
— Maximizing the log-likelihood is equivalent to
maximizing the likelihood
I(D,w,o)=log( L(D,w,c)) =log [] p(y,;Ix,,w,0)

i=1
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ML estimation of the parameters

» Using conditional density

1 1 5
p(yIx,w,o)= aﬂeXp[_ 7o (y—f(xw))’]

* We can rewrite the log-likelihood as
I(D,w,o0)=1log( L(D,w,o)) = log H p(y,|x,,w,o0)

i=1

:anlog P(yi|X,-aWa0')=Zn:{ 2;2 A—f(Xi,W))Z—C(O')}

i=1 i=1

- f(X,,W)) +C(0)
N

Y
* Maximizing with regard to w, is equivalent to minimizing
squared error function
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ML estimation of parameters

* Criteria based on mean squares error function and the log
likelihood of the output are related

1
Jonline (yi’xi) = 20_2 log p(yz |X7~,W,O')+C(G)

* We know how to optimize parameters w
— the same approach as used for the least squares fit
* But what is the ML estimate of the variance of the noise?

* Maximize /(D,w,o ) with respect to variance
. I < .
P = ;Z (yi - f(xi9w ))2
i=1

= mean squared prediction error for the best predictor
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Regularized linear regression

If the number of parameters is large relative to the number of
data points used to train the model, we face the threat of
overfit (generalization error of the model goes up)

The prediction accuracy can be often improved by setting
some coefficients to zero

— Increases the bias, reduces the variance of estimates
Solutions:

— Subset selection

— Ridge regression

— Principal component regression

Next: ridge regression
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Ridge regression

Error function for the standard least squares estimates:

J,m =13 (3 -w'x,)’

i=1,.n

. .1
Weseek: w™ =argmin — > (y,-w'x,)’

i=l,.n
Ridge regression:

1
(W)= 3= wx) + Afwlf

i=1,.n

d
w| = Z; w? and 420

What does the new error function do?
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Ridge regression

« Standard regression:
1,0 = Y (5w X))
i=l,.n
* Ridge regression:
1 2
J, (W)= ; Z (yi - wai)2 + l”W”

i=1,.n

d
2 . . .
. ||w || = E w]  penalizes non-zero weights with the cost
= proportional to 4 (a shrinkage coefficient)

* Ifan input attribute x; has a small effect on improving the error
function it is “shut down” by the penalty term

* Inclusion of a shrinkage penalty is often referred to as
regularization
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Regularized linear regression

How to solve the least squares problem if the error function is
enriched by the regularization term /1||w || ?

Answer: The solution to the optimal set of weights w is obtained
again by solving a set of linear equation.

Standard linear regression:
2 =
V,(J,(w)) = __z v, - wai)Xi =0
n-io
Solution: w*=(X"X)"'X"y
where X is an nxd matrix with rows corresponding to
examples and columns to inputs

Regularized linear regression:
w*=(AI+X"X)"'X"y
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