CS 2750 Machine Learning Lecture 4

Density estimation

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

Evaluation of learning models

Simple holdout method

- Divide the data to the training and test data

- Typically 2/3 training and 1/3 testing

CS 2750 Machine Learning

Evaluation

Other more complex methods

- Use multiple train/test sets
- Based on various random re-sampling schemes:
 - Random sub-sampling
 - Cross-validation
 - Bootstrap

Evaluation

- What if we want to compare the predictive performance on a classification or a regression problem for two different learning methods?
- **Solution:** compare the error results on the test data set or the average statistics on the same training/testing data splits
- **Answer**: the method with better (smaller) testing error gives a better generalization error.
- But we need to use statistics to validate the choice

CS 2750 Machine Learning

Outline

Outline:

- Density estimation:
 - Maximum likelihood (ML)
 - Bayesian parameter estimates
 - MAP
- Bernoulli distribution
- Binomial distribution
- Multinomial distribution
- Normal distribution

Density estimation

Data:
$$D = \{D_1, D_2, ..., D_n\}$$

 $D_i = \mathbf{x}_i$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$ with:
 - Continuous values
 - Discrete values

E.g. *blood pressure* with numerical values or *chest pain* with discrete values

[no-pain, mild, moderate, strong]

Underlying true probability distribution:

$$p(\mathbf{X})$$

CS 2750 Machine Learning

Density estimation

Data: $D = \{D_1, D_2, ..., D_n\}$ $D_i = \mathbf{x}_i$ a vector of attribute values

Objective: try to estimate the underlying 'true' probability distribution over variables X, p(X), using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed p(X))

Density estimation

Types of density estimation:

Parametric

- the distribution is modeled using a set of parameters Θ $p(\mathbf{X} | \Theta)$
- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D

Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor

Semi-parametric

CS 2750 Machine Learning

Learning via parameter estimation

In this lecture we consider parametric density estimation Basic settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$
- A model of the distribution over variables in X with parameters Θ : $\hat{p}(X | \Theta)$
- **Data** $D = \{D_1, D_2, ..., D_n\}$

Objective: find parameters Θ such that $p(\mathbf{X}|\Theta)$ describes data D the best

Parameter estimation.

Maximum likelihood (ML)

maximize $p(D | \Theta, \xi)$

- yields: one set of parameters Θ_{ML}
- the target distribution is approximated as:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \mathbf{\Theta}_{ML})$$

- · Bayesian parameter estimation
 - uses the posterior distribution over possible parameters

$$p(\Theta \mid D, \xi) = \frac{p(D \mid \Theta, \xi)p(\Theta \mid \xi)}{p(D \mid \xi)}$$

- Yields: all possible settings of (and their "weights")
- The target distribution is approximated as:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid D) = \int_{\mathbf{\Theta}} p(X \mid \mathbf{\Theta}) p(\mathbf{\Theta} \mid D, \xi) d\mathbf{\Theta}$$

CS 2750 Machine Learning

Parameter estimation.

Other possible criteria:

• Maximum a posteriori probability (MAP)

maximize $p(\mathbf{\Theta} | D, \xi)$ (mode of the posterior)

- Yields: one set of parameters Θ_{MAP}
- Approximation:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \mathbf{\Theta}_{MAP})$$

• Expected value of the parameter

 $\hat{\mathbf{\Theta}} = E(\mathbf{\Theta})$ (mean of the posterior)

- Expectation taken with regard to posterior $p(\mathbf{\Theta} \mid D, \xi)$
- Yields: one set of parameters
- Approximation:

$$\hat{p}(\mathbf{X}) = p(\mathbf{X} \mid \hat{\mathbf{\Theta}})$$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased **Outcomes:** two possible values -- head or tail **Data:** D a sequence of outcomes x_i such that

• head $x_i = 1$ • tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a **head** $\hat{\theta}$ from data

CS 2750 Machine Learning

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is $\, heta$
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

Heads: 15Tails: 10

What would be your estimate of the probability of a head?

$$\widetilde{\theta} = ?$$

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

Heads: 15Tails: 10

What would be your choice of the probability of a head?

Solution: use frequencies of occurrences to do the estimate

$$\widetilde{\theta} = \frac{15}{25} = 0.6$$

This is the maximum likelihood estimate of the parameter θ

CS 2750 Machine Learning

Probability of an outcome

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ Probability of an outcome of a coin flip x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$
 Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_i is going to pick its correct probability
- Gives θ for $x_i = 1$
- Gives $(1-\theta)$ for $x_i = 0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$ • tail $x_i = 0$
- **Model:** probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of independent coin flips

$$D = H H T H T H$$
 (encoded as $D = 110101$)

What is the probability of observing the data sequence **D**:

$$P(D \mid \theta) = ?$$

CS 2750 Machine Learning

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta (1 - \theta)\theta (1 - \theta)\theta$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$ • tail $x_i = 0$
- **Model:** probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta(1-\theta)\theta(1-\theta)\theta$$

likelihood of the data

CS 2750 Machine Learning

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_i such that

- head $x_i = 1$
- tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: a sequence of coin flips D = H H T H T H encoded as D= 110101

What is the probability of observing a data sequence **D**:

$$P(D \mid \theta) = \theta\theta (1 - \theta)\theta (1 - \theta)\theta$$
$$P(D \mid \theta) = \prod_{i=0}^{6} \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data.

Learning: we do not know the value of the parameter θ Our learning goal:

• Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Intuition:

• more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit:

$$Error(D, \theta) = -P(D \mid \theta)$$

CS 2750 Machine Learning

Example: Bernoulli distribution.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail Data: D a sequence of outcomes x_i such that

• head $x_i = 1$

• tail $x_i = 0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Objective:

We would like to estimate the probability of a **head** $\hat{\theta}$

Probability of an outcome x_i

$$P(x_i \mid \theta) = \theta^{x_i} (1 - \theta)^{(1 - x_i)}$$
 Bernoulli distribution

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1-x_i)}$$

Maximum likelihood estimate

$$\theta_{ML} = \arg\max_{\theta} P(D \mid \theta, \xi)$$

Optimize log-likelihood (the same as maximizing likelihood)

$$l(D,\theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log (1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log (1-\theta) \sum_{i=1}^{n} (1-x_i)$$

$$N_1 - \text{number of heads seen} \qquad N_2 - \text{number of tails seen}$$

CS 2750 Machine Learning

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$l(D,\theta) = N_1 \log \theta + N_2 \log(1-\theta)$$

Set derivative to zero

$$\frac{\partial l(D,\theta)}{\partial \theta} = \frac{N_1}{\theta} - \frac{N_2}{(1-\theta)} = 0$$

$$\theta = \frac{N_1}{N_1 + N_2}$$

ML Solution:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of a head and a tail?

CS 2750 Machine Learning

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTHTHHHHHHHHH

- **Heads:** 15
- **Tails:** 10

What is the ML estimate of the probability of head and tail?

Head:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$$

Head:
$$\theta_{ML} = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2} = \frac{15}{25} = 0.6$$
Tail: $(1 - \theta_{ML}) = \frac{N_2}{N} = \frac{N_2}{N_1 + N_2} = \frac{10}{25} = 0.4$

Maximum a posteriori estimate

Maximum a posteriori estimate

- Selects the mode of the **posterior distribution**

$$\theta_{MAP} = \underset{\theta}{\operatorname{arg max}} p(\theta \mid D, \xi)$$

Likelihood of data <

 $p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)p(\theta \mid \xi)}{P(D \mid \xi)}$ (via Bayes rule)
Normalizing factor

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1 - \theta)^{(1 - x_i)} = \theta^{N_1} (1 - \theta)^{N_2}$$

 $p(\theta | \xi)$ - is the prior probability on θ

How to choose the prior probability?

CS 2750 Machine Learning

Prior distribution

Choice of prior: Beta distribution

$$p(\theta \mid \xi) = Beta(\theta \mid \alpha_1, \alpha_2) = \frac{\Gamma(\alpha_1 + \alpha_2)}{\Gamma(\alpha_1)\Gamma(\alpha_2)} \theta^{\alpha_1 - 1} (1 - \theta)^{\alpha_2 - 1}$$

 $\Gamma(x)$ - a Gamma function $\Gamma(x) = (x-1)\Gamma(x-1)$ For integer values of x $\Gamma(n) = (n-1)!$

Why to use Beta distribution?

Beta distribution "fits" Bernoulli trials - conjugate choices

$$P(D \mid \theta, \xi) = \theta^{N_1} (1 - \theta)^{N_2}$$

Posterior distribution is again a Beta distribution

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi)Beta(\theta \mid \alpha_1, \alpha_2)}{P(D \mid \xi)} = Beta(\theta \mid \alpha_1 + N_1, \alpha_2 + N_2)$$

Maximum a posterior probability

Maximum a posteriori estimate

- Selects the mode of the **posterior distribution**

$$p(\theta \mid D, \xi) = \frac{P(D \mid \theta, \xi) Beta(\theta \mid \alpha_{1}, \alpha_{2})}{P(D \mid \xi)} = Beta(\theta \mid \alpha_{1} + N_{1}, \alpha_{2} + N_{2})$$

$$= \frac{\Gamma(\alpha_{1} + \alpha_{2} + N_{1} + N_{2})}{\Gamma(\alpha_{1} + N_{1})\Gamma(\alpha_{2} + N_{2})} \theta^{N_{1} + \alpha_{1} - 1} (1 - \theta)^{N_{2} + \alpha_{2} - 1}$$

Notice that parameters of the prior act like counts of heads and tails (sometimes they are also referred to as prior counts)

MAP Solution:
$$\theta_{MAP} = \frac{\alpha_1 + N_1 - 1}{\alpha_1 + \alpha_2 + N_1 + N_2 - 2}$$

CS 2750 Machine Learning

MAP estimate example

- Assume the unknown and possibly biased coin
- Probability of the head is $\, heta$
- Data:

HHTTHHTHTHTTHTHHHHHHHHH

- **Heads:** 15
- **Tails:** 10
- Assume $p(\theta \mid \xi) = Beta(\theta \mid 5,5)$

What is the MAP estimate?

MAP estimate example

- · Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTTTTHTHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10
- Assume $p(\theta \mid \xi) = Beta(\theta \mid 5,5)$

What is the MAP estimate?

$$\theta_{MAP} = \frac{N_1 + \alpha_1 - 1}{N - 2} = \frac{N_1 + \alpha_1 - 1}{N_1 + N_2 + \alpha_1 + \alpha_2 - 2} = \frac{19}{33}$$

CS 2750 Machine Learning

MAP estimate example

- Note that the prior and data fit (data likelihood) are combined
- The MAP can be biased with large prior counts
- It is hard to overturn it with a smaller sample size
- Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

- **Heads:** 15
- **Tails:** 10
- Assume

$$p(\theta \mid \xi) = Beta(\theta \mid 5,5)$$
 $\theta_{MAP} = \frac{19}{33}$

$$p(\theta \mid \xi) = Beta(\theta \mid 5,20)$$
 $\theta_{MAP} = \frac{19}{48}$