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Density estimation
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Data cleaning and preprocessing
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Reduce the dimensionality
of data, especially if the
sample size is small
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Select a class of models
among which to search for
the model (by human, 
semi-automatic)
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Find the best model according
to some optimization criterion
• efficiency matters 
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation Assess the quality of the model
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Simple holdout method
– Divide the data to the training and test data

– Typically 2/3 training and 1/3 testing

Evaluation of learning models

Learn (fit)

Dataset

Training set Testing set

Evaluate

Predictive
model

CS 2750 Machine Learning

Other more complex methods 
• Use multiple train/test sets
• Based on various random 

re-sampling schemes:
– Random sub-sampling 
– Cross-validation
– Bootstrap

Evaluation

Classify/Evaluate

Data

TestTrain

Generate multiple 
train and test sets

Learning

Average Stats

TestTestTrainTrain
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• Random sub-sampling
– Repeat a simple 

holdout method k times

Evaluation

Classify/Evaluate

Data

TestTrain

Split randomly into 
70% Train, 30% Test

Learning

Average Stats

TestTestTrainTrain

CS 2750 Machine Learning

Cross-validation (k-fold)
• Divide data into k  

disjoint groups, test on 
k-th group/train on the 
rest

• Typically 10-fold 
cross-validation

• Leave one out cross-
validation
(k = size of the data D)

Evaluation

Classify/Evaluate

Test = ith group, Train on the rest

Data

TestTrain

Split into k groups 
of equal size

Learning

Average Stats

TestTestTrainTrain
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Bootstrap
• The training set of size 

N = size of the data D
• Sampling with the 

replacement

Evaluation

Classify/Evaluate

Data

TestTrain

Generate the 
training set of size N 

with replacement, 
the rest goes to the 

test set

Learning

Average Stats

TestTestTrainTrain
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Feeding back the evaluation
results may help to choose
a better model
• but then be aware that you are 

picking a winner
Evaluation statistics for the
winner model may not reflect its
true performance
Fix: Add one more evaluation step
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• What if we want to compare the predictive performance on a 
classification or a regression problem  for two different 
learning methods?

• Solution: compare the error results on the test data set or the 
average statistics on the same training/testing data splits

• Answer: the method with better (smaller) testing error gives a 
better generalization error.

• But we need to use statistics to validate the choice 

Evaluation

CS 2750 Machine Learning

Outline

Outline:
• Density estimation:

– Maximum likelihood (ML)
– Bayesian parameter estimates
– MAP

• Bernoulli distribution
• Binomial distribution
• Multinomial distribution
• Normal distribution
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Density estimation

Data: 

Attributes:
• modeled by random variables                                     with:

– Continuous values
– Discrete values

E.g. blood pressure with numerical values 
or chest pain with discrete values 

[no-pain, mild, moderate, strong]
Underlying true probability distribution:

},..,,{ 21 nDDDD =
iiD x= a vector of attribute values

},,,{ 21 dXXX K=X

)(Xp

CS 2750 Machine Learning

Density estimation
Data: 

Objective: try to estimate the underlying ‘true’ probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed          )

},..,,{ 21 nDDDD =
iiD x= a vector of attribute values

X

)(Xp },..,,{ 21 nDDDD =
n samplestrue distribution estimate

)(ˆ Xp

)(Xp

)(Xp
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Density estimation

Types of density estimation:
Parametric
• the distribution is modeled using a set of parameters           

• Example: mean and covariances of a multivariate normal
• Estimation: find parameters       describing data D
Non-parametric
• The model of the distribution utilizes all examples in D
• As if all examples were parameters of the distribution
• Examples: Nearest-neighbor
Semi-parametric

Θ
)|( ΘXp

Θ

CS 2750 Machine Learning

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters       : 

• Data

Objective: find parameters        such that                 describes data
D  the best 

},,,{ 21 dXXX K=X

Θ

},..,,{ 21 nDDDD =

)|(ˆ ΘXp

Θ )|( ΘXp
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Parameter estimation. 
• Maximum likelihood (ML)

– yields: one set of parameters
– the target distribution is approximated as:

• Bayesian  parameter estimation
– uses the posterior distribution over possible parameters

– Yields: all possible  settings of          (and their “weights”) 
– The target distribution is approximated as: 

),|( ξΘDpmaximize

)|(
)|(),|(),|(

ξ
ξξξ

Dp
pDpDp ΘΘ

=Θ

MLΘ

Θ

)()(ˆ MLpp Θ|XX =

∫==
Θ

ΘΘΘ|XX dDpXpDpp ),|()|()()(ˆ ξ
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Parameter estimation. 
Other possible criteria:
• Maximum a posteriori probability (MAP)

– Yields: one set of parameters
– Approximation:

• Expected value of the parameter

– Expectation taken with regard to posterior
– Yields: one set of parameters
– Approximation:

maximize ),|( ξDp Θ (mode of the posterior)

MAPΘ

)(ˆ ΘΘ E=

)()(ˆ MAPpp Θ|XX =

),|( ξDp Θ

)ˆ()(ˆ Θ|XX pp =

(mean of the posterior)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Objective:
We would like to estimate the probability of a head
from data

θ
)1( θ−

0=ix
1=ix

ix

θˆ

CS 2750 Machine Learning

Parameter estimation.  Example.

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What would be your estimate of the probability of a head ?

θ

?~
=θ
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Parameter estimation.  Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate

This is the maximum likelihood estimate of the parameter

θ

6.0
25
15~

==θ

θ
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Probability of an outcome
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: we know the probability
Probability of an outcome of a coin flip

– Combines the probability of a head and a tail
– So that        is going to pick its correct probability 
– Gives               for
– Gives               for

)1()1()|( ii xx
ixP −−= θθθ

θ
)1( θ−

0=ix
1=ix

ix

Bernoulli distribution

ix

ix
θ

)1( θ− 0=ix
1=ix

θ
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of independent coin flips 
D = H H T H T H           (encoded as D= 110101)

What is the probability of observing the data sequence D:

?)|( =θDP

θ
)1( θ−

0=ix
1=ix

ix

CS 2750 Machine Learning

Probability of a sequence of outcomes.
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of coin flips D = H H T H T H
encoded as D= 110101

What is the probability of observing a data sequence D:
θθθθθθθ )1()1()|( −−=DP

θ
)1( θ−

0=ix
1=ix

ix



14

CS 2750 Machine Learning

Probability of a sequence of outcomes.
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of coin flips D = H H T H T H
encoded as D= 110101

What is the probability of observing a data sequence D:
θθθθθθθ )1()1()|( −−=DP

θ
)1( θ−

0=ix
1=ix

ix

likelihood of the data

CS 2750 Machine Learning

Probability of a sequence of outcomes.
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Assume: a sequence of coin flips D = H H T H T H
encoded as D= 110101

What is the probability of observing a data sequence D:

Can be rewritten using the Bernoulli distribution:

θθθθθθθ )1()1()|( −−=DP

θ
)1( θ−

0=ix
1=ix

ix

)1(
6

1

)1()|( ii x

i

xDP −

=

−= ∏ θθθ
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The goodness of fit to the data.

Learning: we do not know the value of the parameter
Our learning goal: 
• Find the parameter       that fits the data D the best? 
One solution to the “best”: Maximize the likelihood

Intuition:
• more likely are the data given the model, the better is the fit
Note:  Instead of an error function that measures how bad the data 

fit the model we have a measure that tells us how well the data 
fit :

θ

)1(

1

)1()|( ii x
n

i

xDP −

=

−= ∏ θθθ

θ

)|(),( θθ DPDError −=

CS 2750 Machine Learning

Example: Bernoulli distribution.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes       such that 

• head
• tail

Model:  probability of a head
probability of a tail

Objective:
We would like to estimate the probability of a head

Probability of an outcome 
)1()1()|( ii xx

ixP −−= θθθ

θ
)1( θ−

0=ix
1=ix

ix

θˆ

ix
Bernoulli distribution
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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of heads seen 2N - number of tails seen

),|(maxarg ξθθ
θ

DPML =

Likelihood of data:
)1(

1

)1(),|( ii x
n

i

xDP −

=

−= ∏ θθξθ

Optimize log-likelihood (the same as maximizing likelihood)

=−== −

=
∏ )1(

1

)1(log),|(log),( ii x
n

i

xDPDl θθξθθ

)1()1log(log)1log()1(log
111
∑∑∑
===

−−+=−−+
n

i
i

n

i
i

n

i
ii xxxx θθθθ
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Maximum likelihood (ML) estimate.

21

11

NN
N

N
N

ML +
==θML Solution:

Optimize log-likelihood

)1log(log),( 21 θθθ −+= NNDl
Set derivative to zero

0
)1(

),( 21 =
−

−=
∂

∂
θθθ

θ NNDl

21

1

NN
N
+

=θSolving
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What is the ML estimate of the probability of a head and a tail?

θ

CS 2750 Machine Learning

Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

What is the ML estimate of the probability of head and tail ?

θ

6.0
25
15

21

11 ==
+

==
NN

N
N
N

MLθ

4.0
25
10)1(

21

22 ==
+

==−
NN

N
N
N

MLθ

Head:

Tail:
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Maximum a posteriori estimate

Maximum a posteriori estimate
– Selects the mode of the posterior distribution

How to choose the prior probability?

),|(maxarg ξθθ
θ

DpMAP =

)|(
)|(),|(),|(

ξ
ξθξθξθ

DP
pDPDp = (via Bayes rule)

)|( ξθp - is the prior probability on θ

21 )1()1(),|( )1(

1

NNx
n

i

x iiDP θθθθξθ −=−= −

=
∏

priorLikelihood of data

Normalizing factor

CS 2750 Machine Learning

Prior distribution

),|(
)|(

),|(),|(),|( 2211
21 NNBeta

DP
BetaDPDp ++== ααθ

ξ
ααθξθξθ

Choice of prior: Beta distribution

Beta distribution “fits” Bernoulli trials - conjugate choices

11

21

21
21

21 )1(
)()(
)(),|()|( −− −

ΓΓ
+Γ

== αα θθ
αα
ααααθξθ Betap

Why to use Beta distribution?

21 )1(),|( NNDP θθξθ −=

Posterior distribution is again a Beta distribution

)(xΓ - a Gamma function
!)1()( −=Γ nnFor integer values of x

)1()1()( −Γ−=Γ xxx



19

CS 2750 Machine Learning

Beta distribution

11 )1(
)()(
)(),|()|( −− −

ΓΓ
+Γ

== ba

ba
babaBetap θθθξθ
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Posterior distribution

*

=

),|(
)|(

),|(),|(
),|( 2211

21 NNBeta
DP
BetaDPDp ++== ααθ

ξ
ααθξθ

ξθ

Beta

Beta
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Maximum a posterior probability

Maximum a posteriori estimate
– Selects the mode of the posterior distribution

Notice that parameters of the prior
act like counts of heads and tails 

(sometimes they are also referred to as prior counts)

2
1

2121

11

−+++
−+

=
NN

N
MAP αα

αθMAP Solution:

11

2211

2121 2211 )1(
)()(
)( −+−+ −

+Γ+Γ
+++Γ

= αα θθ
αα

αα NN

NN
NN

),|(
)|(

),|(),|(
),|( 2211

21 NNBeta
DP
BetaDPDp ++== ααθ

ξ
ααθξθ

ξθ
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MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

• Assume 
What is the MAP estimate?

θ

)5,5|()|( θξθ Betap =
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MAP estimate example

• Assume the unknown and possibly biased coin
• Probability of the head is
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

• Assume 
What is the MAP estimate ?

θ

33
19

2
1

2
1

2121

1111 =
−+++

−+
=

−
−+

=
αα

αα
θ

NN
N

N
N

MAP

)5,5|()|( θξθ Betap =
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MAP estimate example

• Note that the prior and data fit (data likelihood) are combined
• The MAP can be biased with large prior counts
• It is hard to overturn it with a smaller sample size
• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T
– Heads: 15
– Tails: 10

• Assume 

)20,5|()|( θξθ Betap =

)5,5|()|( θξθ Betap =
33
19

=MAPθ

48
19

=MAPθ


