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Ensemble methods

 Ensemble methods:

— Use a combination of simpler learners to improve
predictions

* Mixture of experts

— Multiple ‘base’ models (classifiers, regressors), each covers
a different part (region) of the input space

e Committee machines:

— Multiple ‘base’ models (classifiers, regressors), each covers
the complete input space

— Each base model is trained on a slightly different train set

— Combine predictions of all models to produce the output
* Goal: Improve the accuracy of the ‘base’ model

— Methods: Bagging, Boosting, Stacking (not covered)
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Mixture of experts model

* Ensemble methods:

— Use a combination of simpler learners to improve
predictions

* Mixture of expert model:
— Different input regions covered with different learners
— A “soft” switching between learners

* Mixture of experts

Expert = learner -
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Mixture of experts model

* Gating network : decides what expert to use

g2,,8,.--g, - gating functions

Expert 1

Expert 2

Expert k
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Learning mixture of experts

Learning consists of two tasks:
— Learn the parameters of individual expert networks
— Learn the parameters of the gating network
* Decides where to make a split
Assume: gating functions give probabilitiesk

0<g,(x)g,(x),.g,(x)<1 Z g, (x)=1

Based on the probability we partition the space
— partitions belongs to different experts
How to model the gating network?
— A multiway classifier model:
* softmax model
+ a generative classifier model
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Learning mixture of experts

Assume we have a set of k linear experts
U, = GI.TX (Note: bias terms are hidden in x)
Assume a softmax gating network

gi(x) — keXp(ni X)
> exp(1, x)

Likelihood of y (assumed that errors for different experts are
normally distributed with the same variance)

k
P(y|x,0,m) =) P(o|x,n)p(y|x,0,0)

i=1

zp@%|&ﬂ)

exp( .’ x)

k

SN exp( m ;) x)

j=1

k
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Learning mixture of experts

Gradient learning.
On-line update rule for parameters . of expert i
— If we know the expert that is responsible for x
O, < 0, +a,(y—u)x,
— If we do not know the expert

0, < 0, +a,h(y—u)x,

it

h, - responsibility of the ith expert = a kind of posterior

 ap(ixe.0) g epl1/2y-uf)
hi(xay)_ k ok

S g, 0p( [ x0,.0) Y g xexpl-1/2]y- 4,
u=1

u=l1

')

g,(x) -aprior exp(...) - alikelihood
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Learning mixtures of experts

Gradient methods
* On-line learning of gating network parameters 7).

77,',' <~ 771;,' + :Bij(hi(xay)_ gi(x))xj

* The learning with conditioned mixtures can be extended to
learning of parameters of an arbitrary expert network

— e.g. logistic regression, multilayer neural network

ol
O, < 0, +p; Y
i

ol 0l ou, o ou,

06, ou, 00, 06,
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Learning mixture of experts

EM algorithm offers an alternative way to learn the mixture

Algorithm:

Initialize parameters ()
Repeat
Set @'= ®

1. Expectation step
000" = EH\X,Y,O‘ log P(H,Y | X,0,¢)
2. Maximization step
® =arg max Q(0O |O")
[©)
until no or small improvement in Q(©® |O")

— Hidden variables are identities of expert networks
responsible for (x,y) data points
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Learning mixture of experts with EM

» Assume we have a set of linear experts
M= eiTX
* Assume a softmax gating network
g:(x)=P(o,|x,1)
* Q function to optimize
0]0")= EH\X,Y,O‘ log P(H, Y | X,0,¢)
* Assume:
— [ indexes different data points

— &/ an indicator variable for the data point / to be covered
by an expert i

0010)=> Y EG|x',y,0.0)log(P(y,0,|x,0,1))
[ i
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Learning mixture of experts with EM

e Assume:
— [ indexes different data points
— &/ an indicator variable for data point / and expert i

0010)=> Y E/|x',y,0.0)log(P(y o, |x',0,1))
l i

(x! x.,0
E(é‘il|X],yl,®y,“|):hil(xl’yl): kgz( )p(y| i )
> g, xHp(' X, e,,0)

u=1

Responsibility of the expert i for (x,y)

0©[0)=3 Z hi (x', y)log(P(y', @, | x',0,m))

1
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Learning mixture of experts with EM

* The maximization step boils down to the problem that is
equivalent to the problem of finding the ML estimates of the
parameters of the expert and gating networks

0©10)=3 Z h(x',y)log(P(y' @, | x',0,m)

log(P(y', @, | x',0,m)=logP(y' | ®,,x',©)+log P(e, | X', 1)

" t

Expert network i Gating network
(Linear regression) (Softmax)

* Note that any optimization technique can be applied in this
step
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Learning mixture of experts

Note that we can use different expert and gating models

For example:

— Experts: logistic regression models

v, = 1/(1+ exp( —ﬂiTX))

— Gating network: a generative latent variable model

gi(x) = P(a)i | X, M)

Likelihood of y:

Hidden class

"

k
P(y|x,0,m) =) P(o,|x,)p(y|x,0,,0)

u=1
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Hierarchical mixture of experts

Mixture of experts: define a probabilistic split

The idea can be extended to a hierarchy of experts (a kind of

a probabilistic decision tree)

2

el
X El E2

514

E4

Switching (gating)
indicator
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Hierarchical mixture model

An output is conditioned (gated) on multiple mixture levels

P(.y | X’®) ZZP(a)u | X9 U)Zp(a)uv | qu’gu)‘zp(a)uv“s | X’a)u’a)uv" * .)P()/ | X’a)u’a)uv""guws

)

Individual experts

* Deﬁne qu..s = {a)u’a)uv Ea @ }

‘ uv ..s

P(Q, . |x,0)=P(o,|x)P(o, X 0,).P(o

uv..s uv..s

Ix,0,,0,,...)
* Then
P(y|x,0)= Z Z Z PQ, | x,0)P(y[x,Q, ,0)

- Mixture model is a kind of soft decision tree model
- with a fixed tree structure !!
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Hierarchical mixture of experts

» Multiple levels of probabilistic gating functions
8.(x)=P(o, |x,0) g..(x)=Plo, X 0,0)

* Multiple levels of responsibilities

h,(x,y)=Plo,|x,y,0) h,(x,y)=Po,|x,y0,0)

+ How they are related? g V‘u*(x)

responsibility o —
®)P L0 .0
P(a)uv ‘Xay,a)u,@)): ) (a)uv |X a)u )

sz(ylx’a)u’wuv’G)P(a)uv |X’a)u’®)>
' \
=Y P(y,0, |x,0,,0)=P(y|x,0,,0)

Plylx,o,,o

uy >
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Hierarchical mixture of experts

* Responsibility for the top layer
P(ylx,0,,0)P(», |x,0)
2 PyIx.e, 0)P(o,[x,0)

h,(x,y)=P(o,|x,y,0)=

« But P(y|x,,0) is computed while computing
hv\u(XaJ’) = P(a)w | Xayawu,®)
* General algorithm:
— Downward sweep; calculate

O “r

gv\u (x) = P(a)uv | X7wu’®) gVW (X)
— Upward sweep; calculate h,(x,y)
hu(xay):P(a)ulxay7®) a)uv
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On-line learning

. T
* Assume linear experts 4, =0, 'x

* Gradients (vector form):

ol

m = huhv|u (y - quv)x

ol

—=(h,—g,)x Top level (root) node
on

ol

—=h,(h, —g,)x Second level node
98

» Again: can it can be extended to different expert networks
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Ensemble methods

* Mixture of experts

— Multiple ‘base’ models (classifiers, regressors), each covers
a different part (region) of the input space

e Committee machines:

— Multiple ‘base’ models (classifiers, regressors), each covers
the complete input space

— Each base model is trained on a slightly different train set
— Combine predictions of all models to produce the output
* Goal: Improve the accuracy of the ‘base’ model
— Methods:
* Bagging
* Boosting
» Stacking (not covered)
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Bagging (Bootstrap Aggregating)

* Given:
— Training set of N examples
— A class of learning models (e.g. decision trees, neural
networks, ...)
* Method:
— Train multiple (k) models on different samples (data splits)
and average their predictions
— Predict (test) by averaging the results of k models
* Goal:
— Improve the accuracy of one model by using its multiple
copies
— Average of misclassification errors on different data splits

gives a better estimate of the predictive ability of a learning
method
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Bagging algorithm

* Training
— In each iteration ¢, =1,...T

» Randomly sample with replacement N samples from the
training set

* Train a chosen “base model” (e.g. neural network,
decision tree) on the samples

* Test
— For each test example
« Start all trained base models
* Predict by combining results of all T trained models:
— Regression: averaging
— Classification: a majority vote
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Simple Majority Voting

Test examples

— _ E—

% "
B R s

] 5 s I Y
|:| Class “yes”
- Class “no”
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Analysis of Bagging

* Expected error= Bias+Variance

— Expected error is the expected discrepancy between the
estimated and true function

el (x)- e[y (x))?]

— Bias is squared discrepancy between averaged
estimated and true function

(el O £l (x )

— Variance is expected divergence of the estimated
function vs. its average value

£[(7 (x)- £[7 ()]
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When Bagging works?
Under-fitting and over-fitting
* Under-fitting: " -
— High bias (models are not 1 Samples |
accurate)
— Small variance (smaller 5 ]
influence of examples in the |
training set) A /\ ;
* Over-fitting: 2 V \/ ]
— Small bias (models flexible 1 ]
enough to fit well to training
data) 15 Underfitting
— Large variance (models 2 Overitting
depend very much on the
training set) T T R E R B BB
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Averaging decreases variance

* Example

— Assume we measure a random variable x with a N(u,0?)
distribution

— If only one measurement x, is done,
* The expected mean of the measurement is p
* Variance is Var(x,)=c>
— If random variable x is measured K times (X;,X,,...X,) and
the value is estimated as: (x,+x,+...+x,)/K,

* Mean of the estimate is still n
* But, variance is smaller:
—[Var(x,)+...Var(x,)[/K*=Ko?/ K?= 6?/K
» Observe: Bagging is a kind of averaging!
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When Bagging works

* Main property of Bagging (proof omitted)

— Bagging decreases variance of the base model without

changing the bias!!!

— Why? averaging!
* Bagging typically helps

— When applied with an over-fitted base model

* High dependency on actual training data

* It does not help much

— High bias. When the base model is robust to the
changes in the training data (due to sampling)
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