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SVMs for regression

CS 2750 Machine Learning

Support vector machine SVM

• SVM maximize the margin around the separating hyperplane.
• The decision function is fully specified by a subset of the 

training data, the support vectors.
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Support vector machines

• The decision boundary:

• The decision:

• (!!):
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, the optimization depends on 
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Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

• It is possible to use SVM formalism on feature vectors

• Kernel function

• Crucial idea: If we choose the kernel function wisely we can 
compute linear separation in the feature space implicitly such 
that we keep working in the original input space !!!!
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Kernel trick

• Replace the inner product with a kernel

• A well chosen kernel leads to efficient computation

Nonlinear extension
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Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel
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Kernels

• The dot product             is a distance measure
• Kernels can be seen as distance measures

– Or conversely express degree of similarity 
• Design criteria - we want kernels to  be

– valid – Satisfy Mercer condition of positive 
semidefiniteness

– good – embody the “true similarity” between objects
– appropriate – generalize well
– efficient – the computation of k(x,x’) is feasible

• NP-hard problems abound with graphs

xxT
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Kernels

• Research have proposed kernels for comparison of variety of 
objects:
– Strings
– Trees
– Graphs

• Cool thing:
– SVM algorithm can be now applied to classify a variety of 

objects 
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• Regression = find a function that fits the data.
• A data point may be wrong due to the noise
• Idea: Error from points which are close should count as a 

valid noise
• Line should be influenced by the real data not the noise.

Support vector machine for regression
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Linear model
• Training data:

• Our goal is to find a function f(x) that has at most ε deviation 
from the actually obtained target  for all the training data. 
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bbf +〉〈=+= xw,xwx T)(

Linear model
Linear function:

We want a function that is:
• flat: means that one seeks small w
• all data points are within its ε neighborhood 
The problem can be formulated as a convex optimization 

problem:

All data points are assumed to be in the ε neighborhood 
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Linear model
• Real data: not all data points always fall into the ε

neighborhood 

• Idea: penalize points that fall outside the ε neighborhood 
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Linear model
Linear function:

Idea: penalize points that fall outside the ε neighborhood
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εε--intensive loss functionintensive loss function
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Lagrangian that solves the optimization problem

Optimization
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at the optimal solution the Lagrange multipliers 
are non-zero only for points outside the ε band.


