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Support vector machine SVM

* SVM maximize the margin around the separating hyperplane.

» The decision function is fully specified by a subset of the
training data, the support vectors.
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Support vector machines

The decision boundary:
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The decision:

P = sign{z dl.y+ W0:|
ieSV
(M

Decision on a new x requires to compute the inner product
between the examples (x,” x)

Similarly, the optimization depends on  (x,"x )
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Nonlinear case

. . T
The linear case requires to compute (X, X)

The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

X = @(X)
It is possible to use SVM formalism on feature vectors

o(x) o(x")
Kernel function

K(x,x")=¢(x) ¢(x)

Crucial idea: If we choose the kernel function wisely we can
compute linear separation in the feature space implicitly such
that we keep working in the original input space !!!!
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Kernel function example

« Assume x =[x,,x,]" and a feature mapping that maps the input
into a quadratic feature set

X = @(x) =[x}, 67 V232,720, 20,,11
» Kernel function for the feature space:
K(x',x)=(x") @(x)
= XX T XX+ 2x,x,x", X', +2x,x" +2x,x', +1
= (x,x' | +x,x',+1)°
=(1+(x"x")?
* The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space
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Nonlinear extension

Input space Feature space

Kernel trick
* Replace the inner product with a kernel

» A well chosen kernel leads to efficient computation
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Kernel functions

Linear kernel

K(x,x')=x"x'

Polynomial kernel
K(x,x') = [1 + XTX'] g
Radial basis kernel

K(x,x") =exp {— %”x - x'||2}
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Kernels

The dot product x'x is a distance measure
Kernels can be seen as distance measures

— Or conversely express degree of similarity
Design criteria - we want kernels to be

— valid — Satisfy Mercer condition of positive
semidefiniteness

— good — embody the “true similarity” between objects
— appropriate — generalize well
— efficient — the computation of k(x,x”) is feasible

* NP-hard problems abound with graphs

CS 2750 Machine Learning




Kernels

Research have proposed kernels for comparison of variety of
objects:

— Strings
— Trees

— Graphs
Cool thing:

— SVM algorithm can be now applied to classify a variety of
objects
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Support vector machine for regression

Regression = find a function that fits the data.
A data point may be wrong due to the noise

Idea: Error from points which are close should count as a
valid noise

Line should be influenced by the real data not the noise.
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Linear model

* Training data:

{('xl’yl)9"'7 (xl’yl)}’xERn9y€R
* Our goal is to find a function f(x) that has at most € deviation
from the actually obtained target for all the training data.

f(x)=w'x+b=(w, x)+b
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Linear model

Linear function:
f(x)=w'x+b=(W,x)+b
We want a function that is:
+ flat: means that one seeks small w
« all data points are within its € neighborhood
The problem can be formulated as a convex optimization
problem:
minimize %”w”2
y, —{w,x;)-b<¢

subject to
(w,x)+b-y, <¢

1

All data points are assumed to be in the € neighborhood
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Linear model

* Real data: not all data points always fall into the €
neighborhood
f(x)=w'x+b=(w, x)+b
 Idea: penalize points that fall outside the € neighborhood

CS 2750 Machine Learning

Linear model
Linear function:

f(X)=w'sx+b=(w,x)+b
Idea: penalize points that fall outside the € neighborhood

minimize ;—”w”2 + CZ]: (&, +&D)
i=1

Vi—(w,x,)-—b<e+
subject to (W, x)Y+b—y, <e+¢&
£.8, 20
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Linear model

|

|§ | — &  otherwise

_{O for |§|S5

€-intensive loss function
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Optimization
Lagrangian that solves the optimization problem
1 ! .
L =§<w,w>+cZ(§,. +&)
i=1
! ! . .
_Zai(g_é:i Vi +<W,X[-> +b) —Za[ (g+§i +); —<W,x[> _b)
i=1 i=l
! * %
- 2(77[98[ +7 é:i )
i=1

Subject to a;,a;,1;,77; 20

Primal variables w,b,¢& i ¢ i*
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Optimization

Derivatives with respect to primal variables

oL 4 .

—= (a; —a;)=0

ob ;

oL L

-~ = w - (al _al)xl =
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o0& o
;?L: C _ai _771 = 0
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Optimization
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Optimization

1 !
L=—(w,w)+ > & (C—n, —a, )+
2 i1 —_—
=0(C-n"-a"=0)
/

I !

* * * * *
Zé:i (C—n, _ai)_z(ai +a; )g_z(ai +a,;)y,
71 i & =
i=1 :O(Cfni(*)fai(*):O) i=1 i=1

- (@) +Y @ —ab

~nn(o=X(ata)y)  =0(L(ai-a,)=0)
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Optimization

i

!
L= -%<w,w>—2(ai+a?)8—2(af+a7>yf
i=1

i=1
Maximize the dual
L(a,a )= 'EZ (a,—a, )(aj - aj)<xi:xj>
i=1

_ZI (a,+a;)e —zl (a,+a;)y,
i=1 =1

i

Z(a,.—af):o

subject to 4 o
a,,a; €[0,C]

CS 2750 Machine Learning




Solution

We can get:
f(x) =2 (a;=a))(x;,x)+b

at the optimal solution the Lagrange multipliers
are non-zero only for points outside the € band.
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