CS 2750 Machine Learning Lecture 11

Support vector machines

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Outline

Outline:

- Fisher Linear Discriminant
- Algorithms for linear decision boundary
- Support vector machines
- Maximum margin hyperplane.
- Support vectors.
- Support vector machines.
- Extensions to the non-separable case.
- Kernel functions.

Fisher linear discriminant

• Project data into one dimension

$$y = \mathbf{w}^T \mathbf{x}$$

Decision:

 $y = \mathbf{w}^T \mathbf{x} + w_0 \ge 0$

• How to find the projection line?

CS 2750 Machine Learning

Fisher linear discriminant

How to find the projection line?

$$y = \mathbf{w}^T \mathbf{x}$$

Fisher linear discriminant

Assume:

$$\mathbf{m}_{1} = \frac{1}{N_{1}} \sum_{i \in C_{1}}^{N_{1}} \mathbf{x}_{i}$$
 $\mathbf{m}_{2} = \frac{1}{N_{2}} \sum_{i \in C_{2}}^{N_{2}} \mathbf{x}_{i}$

Maximize the difference in projected means:

$$m_2 - m_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$$

CS 2750 Machine Learning

Fisher linear discriminant

Problem 1: $m_2 - m_1 = \mathbf{w}^T (\mathbf{m}_2 - \mathbf{m}_1)$ can be maximized by increasing \mathbf{w}

Problem 2: variance in class distributions after projection is

changed

2 2 2 6

Fisher's solution:

$$J(\mathbf{w}) = \frac{m_2 - m_1}{s_1^2 + s_2^2}$$

Within class variance

$$s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2$$

Fisher linear discriminant

Error:

$$J(\mathbf{w}) = \frac{m_2 - m_1}{s_1^2 + s_2^2}$$

Within class variance after the projection

$$s_k^2 = \sum_{i \in C_k} (y_i - m_k)^2$$

Optimal solution:

$$\mathbf{w} \approx \mathbf{S}_{\mathbf{w}}^{-1}(\mathbf{m}_{2} - \mathbf{m}_{1})$$

$$\mathbf{S}_{\mathbf{w}} = \sum_{i \in C_{1}} (\mathbf{x}_{i} - \mathbf{m}_{1})(\mathbf{x}_{i} - \mathbf{m}_{1})^{T}$$

$$+ \sum_{i \in C_{2}} (\mathbf{x}_{i} - \mathbf{m}_{2})(\mathbf{x}_{i} - \mathbf{m}_{2})^{T}$$

CS 2750 Machine Learning

Linearly separable classes

There is a **hyperplane** that separates training instances with no error

Hyperplane:

$$\mathbf{w}^T\mathbf{x} + w_0 = 0$$

$$\mathbf{w}^T \mathbf{x} + w_0 > 0$$

Class (-1)

$$\mathbf{w}^T\mathbf{x} + w_0 < 0$$

Algorithms for linearly separable set

• Separating hyperplane $\mathbf{w}^T \mathbf{x} + w_0 = 0$

- We can use **gradient methods** or Newton Rhapson for sigmoidal switching functions and learn the weights
- Recall that we learn the linear decision boundary

CS 2750 Machine Learning

Algorithms for linearly separable set

• Separating hyperplane $\mathbf{w}^T \mathbf{x} + w_0 = 0$

Algorithms for linearly separable sets

• Perceptron algorithm:

Simple iterative procedure for modifying the weights of the linear model

Initialize weights w

Loop through examples (x, y) in the dataset D

- 1. Compute $\hat{y} = \mathbf{w}^T \mathbf{x}$
- 2. If $\hat{y} \neq \hat{y} = -1$ then $\mathbf{w}^T \leftarrow \mathbf{w}^T + \mathbf{x}$
- 3. If $y \neq \hat{y} = +1$ then $\mathbf{w}^T \leftarrow \mathbf{w}^T \mathbf{x}$

Until all examples are classified correctly

Properties:

guaranteed convergence

CS 2750 Machine Learning

Algorithms for linearly separable sets

Linear program solution:

• Finds weights that satisfy the following constraints:

$$\mathbf{w}^T \mathbf{x}_i + w_0 \ge 0$$
 For all i, such that $y_i = +1$

$$\mathbf{w}^T \mathbf{x}_i + w_0 \le 0$$
 For all i, such that $y_i = -1$

Together:
$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) \ge 0$$

Property: if there is a hyperplane separating the examples, the linear program finds the solution

Optimal separating hyperplane

- There are multiple hyperplanes that separate the data points
 - Which one to choose?
- Maximum margin choice: the maximum distance of $d_+ + d_-$
 - where d_+ is the shortest distance of a positive example from the hyperplane (similarly d_- for negative examples)

CS 2750 Machine Learning

Maximum margin hyperplane

- For the maximum margin hyperplane only examples on the margin matter (only these affect the distances)
- These are called **support vectors**

Finding maximum margin hyperplanes

- **Assume** that examples in the training set are (\mathbf{x}_i, y_i) such that $y_i \in \{+1, -1\}$
- **Assume** that all data satisfy:

$$\mathbf{w}^{T}\mathbf{x}_{i} + w_{0} \ge 1 \qquad \text{for} \qquad y_{i} = +1$$

$$\mathbf{w}^{T}\mathbf{x}_{i} + w_{0} \le -1 \qquad \text{for} \qquad y_{i} = -1$$

• The inequalities can be combined as:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 \ge 0$$
 for all i

• Equalities define two hyperplanes:

$$\mathbf{w}^T \mathbf{x}_i + w_0 = 1 \qquad \qquad \mathbf{w}^T \mathbf{x}_i + w_0 = -1$$

CS 2750 Machine Learning

Finding the maximum margin hyperplane

- Geometrical margin $p_{\mathbf{w},w_0}(\mathbf{x},y) = y(\mathbf{w}^T\mathbf{x} + w_0) / \|\mathbf{w}\|_{L^2}$
 - measures the distance of a point **x** from the hyperplane \mathbf{w} normal to the hyperplane $\|.\|_{L^2}$ Euclidean norm

For points satisfying:

$$y_i(\mathbf{w}^T\mathbf{x}_i + w_0) - 1 = 0$$

The distance is $\frac{1}{\|\mathbf{w}\|}$

Width of the margin:

$$d_+ + d_- = \frac{2}{\|\mathbf{w}\|_{L2}}$$

Maximum margin hyperplane

- We want to maximize $d_{+} + d_{-} = \frac{2}{\|\mathbf{w}\|_{L^{2}}}$
- We do it by minimizing

$$\|\mathbf{w}\|_{L^2}^2 / 2 = \mathbf{w}^T \mathbf{w} / 2$$

 \mathbf{w}, w_0 - variables

- But we also need to enforce the constraints on points:

$$\left[y_i(\mathbf{w}^T \mathbf{x} + w_0) - 1 \right] \ge 0$$

CS 2750 Machine Learning

Maximum margin hyperplane

- Solution: Incorporate constraints into the optimization
- Optimization problem (Lagrangian)

$$J(\mathbf{w}, w_0, \alpha) = \|\mathbf{w}\|^2 / 2 - \sum_{i=1}^n \alpha_i \left[y_i (\mathbf{w}^T \mathbf{x} + w_0) - 1 \right]$$
$$\alpha_i \ge 0 \quad - \text{Lagrange multipliers}$$

- **Minimize** with respect to \mathbf{w} , w_0 (primal variables)
- Maximize with respect to α (dual variables)
 Lagrange multipliers enforce the satisfaction of constraints

If
$$[y_i(\mathbf{w}^T\mathbf{x} + w_0) - 1] > 0 \implies \alpha_i \to 0$$

Else $\implies \alpha_i > 0$ Active constraint