CS 2750 Machine Learning Lecture 10

Evaluation of classifiers MLPs

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Evaluation

For any data set we use to test the model we can build a **confusion matrix:**

- Counts of examples with:
- class label ω_i that are classified with a label α_i

target

predict

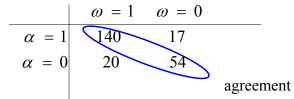
$$\begin{array}{c|cccc} & \omega = 1 & \omega = 0 \\ \hline \alpha = 1 & 140 & 17 \\ \alpha = 0 & 20 & 54 \end{array}$$

Evaluation

For any data set we use to test the model we can build a **confusion matrix:**

target

predict



Error: ?

CS 2750 Machine Learning

Evaluation

For any data set we use to test the model we can build a confusion matrix:

target

predict

$$\alpha = 1 \quad \omega = 0$$

$$\alpha = 1 \quad 140 \quad 17$$

$$\alpha = 0 \quad 20 \quad 54$$

agreement

Error: = 37/231

Accuracy = 1- Error = 194/231

Evaluation for binary classification

Entries in the confusion matrix for binary classification have names:

target

predict

TP: True positive (hit)

FP: False positive (false alarm)

TN: True negative (correct rejection)

FN: False negative (a miss)

CS 2750 Machine Learning

Additional statistics

- Sensitivity (recall) $SENS = \frac{TP}{TP + FN}$
- Specificity $SPEC = \frac{TN}{TN + FP}$
- Positive predictive value (precision)

$$PPT = \frac{TP}{TP + FP}$$

• Negative predictive value

$$NPV = \frac{TN}{TN + FN}$$

Binary classification: additional statistics

Confusion matrix

target

predict

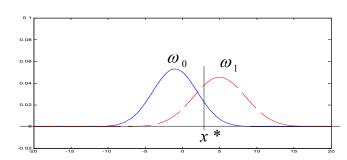
		1	0	
ct	1	140	10	PPV=140/150
	0	20	180	NPV = 180/200
		SENS=140/160	<i>SPEC</i> =180/190	

Row and column quantities:

- Sensitivity (SENS)
- Specificity (SPEC)
- Positive predictive value (PPV)
- Negative predictive value (NPV)

CS 2750 Machine Learning

Binary decisions: ROC



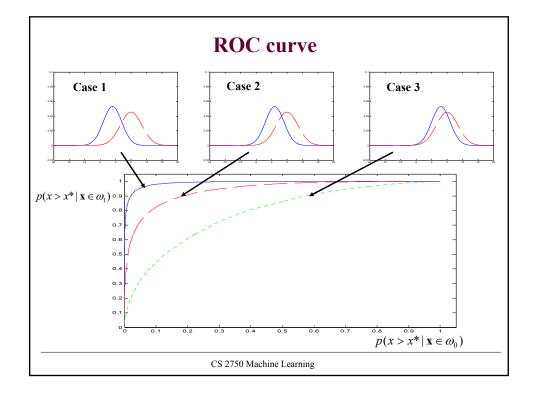
- Probabilities:
 - SENS

 $p(x > x^* \mid \mathbf{x} \in \omega_1)$

- SPEC

 $p(x < x^* \mid \mathbf{x} \in \omega_0)$

Receiver Operating Characteristic (ROC) • ROC curve plots: $SN = p(x > x^* | \mathbf{x} \in \omega_1)$ $1-SP = p(x > x^* | \mathbf{x} \in \omega_0)$ for different \mathbf{x}^* SN $p(x > x^* | \mathbf{x} \in \omega_1)$ 0.0 0.0 0.0 0.1 0.0



Receiver operating characteristic

• ROC

 shows the discriminability between the two classes under different decision biases

Decision bias

- can be changed using different loss function

CS 2750 Machine Learning

Zero-one loss function

• Misclassification error

- Based on the zero-one loss function
 - Any misclassified example counts as 1
 - Correctly classified example counts as 0

agreement

General loss function

- Error function based on a more general loss function
 - Different misclassifications have different weight (loss)
 - $-\alpha_i$ our choice
 - $-\omega_{i}$ true label
 - $-\lambda(\alpha_i \mid \omega_j)$ loss for classification

Example:

$$\lambda(\alpha_i \mid \omega_j) = \begin{pmatrix} \omega = 0 & \omega = 1 & \omega = 2 \\ \alpha = 0 & 0 & 1 & 5 \\ \alpha = 1 & 3 & 0 & 2 \\ \alpha = 2 & 3 & 1 & 0 \end{pmatrix}$$

CS 2750 Machine Learning

Bayesian decision theory

- More general loss function
 - Different misclassifications have different weight (loss) $\lambda (\alpha_i \mid \omega_j)$
- Expected loss for the classification choice α_i

$$R(\alpha_i \mid \mathbf{x}) = \sum_i \lambda(\alpha_i \mid \omega_j) P(y = \omega_j \mid \mathbf{x})$$

- Also called conditional risk
- Decision rule: $\alpha(\mathbf{x})$
 - Chooses label (action) according to the input
- · The optimal decision rule

$$\alpha * (\mathbf{x}) = \arg\min_{\alpha_i} \sum_{j} \lambda(\alpha_i | \omega_j) P(y = \omega_j | \mathbf{x})$$

Bayesian decision theory

The optimal decision rule

$$\alpha * (\mathbf{x}) = \arg\min_{\alpha_i} \sum_{j} \lambda(\alpha_i | \omega_j) P(y = \omega_j | \mathbf{x})$$

How to modify classifiers to handle different loss?

- Discriminative models:
 - Directly optimize the parameters according to the new loss function
- Generative models:
 - Learn probabilities as before
 - Decisions about classes are biased to minimize the empirical loss (as seen above)

CS 2750 Machine Learning

Calculating the loss for data

- Confusion matrix:
 - Counts of examples with:
 - class label ω_i that are classified with a label α_i

$$\alpha = 0 \quad \omega = 1 \quad \omega = 2$$
 $\alpha = 0 \quad 140 \quad 20 \quad 22$
 $\alpha = 1 \quad 17 \quad 54 \quad 8$
 $\alpha = 2 \quad 12 \quad 4 \quad 76$

agreement

Loss
$$\frac{1}{N} \sum_{i} \sum_{j} \lambda(\alpha_{i} | \omega_{j}) N(\alpha_{j} | \omega_{j})$$

Multilayer neural networks

CS 2750 Machine Learning

Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^{n} w_j x_j$$

$$x_1 \qquad w_1 \qquad \sum_{w_2} f(\mathbf{x})$$

$$x_2 \qquad w_d$$

Logistic regression

$$f(\mathbf{x}) = p(y=1|\mathbf{x}, \mathbf{w}) = g(w_0 + \sum_{j=1}^{d} w_j x_j)$$

$$x_1 \qquad \qquad \sum_{w_1} \sum_{w_2} \int_{p(y=1|x)} f(\mathbf{x}) = \sum_{x_2} \int_{w_3} f(\mathbf{x}) = \sum_{x_3} \int_{w_3} f(\mathbf{x}) = \sum_{x_4} \int_{w_4} f(\mathbf{x}) = \int_{w$$

On-line gradient update:

$$w_0 \leftarrow w_0 + \alpha(y - f(\mathbf{x}))$$

$$w_i \leftarrow w_i + \alpha (y - f(\mathbf{x})) x_i$$

The same

On-line gradient update:

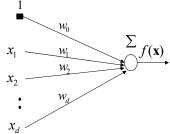
$$w_0 \leftarrow w_0 + \alpha(y - f(\mathbf{x}))$$

$$w_j \leftarrow w_j + \alpha (y - f(\mathbf{x})) x_j$$

Limitations of basic linear units

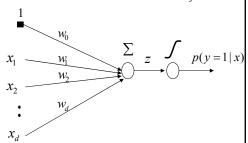
Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j x_j$$



Logistic regression

$$f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + \sum_{j=1}^{d} w_j x_j)$$



Function linear in inputs!!

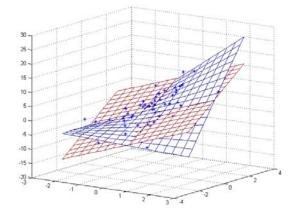
Linear decision boundary!!

CS 2750 Machine Learning

Regression with the quadratic model.

Limitation: linear hyper-plane only

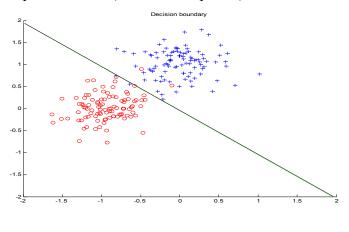
• a non-linear surface can be better



Classification with the linear model.

Logistic regression model defines a linear decision boundary

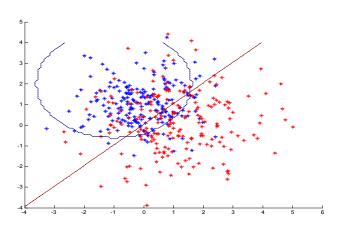
• Example: 2 classes (blue and red points)



CS 2750 Machine Learning

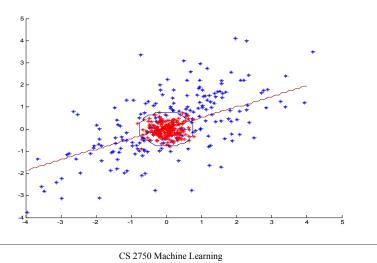
Linear decision boundary

• logistic regression model is not optimal, but not that bad



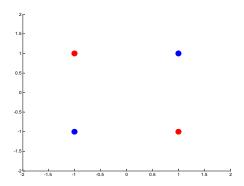
When logistic regression fails?

• Example in which the logistic regression model fails



Limitations of linear units.

Logistic regression does not work for parity functions
 no linear decision boundary exists



Solution: a model of a non-linear decision boundary

Extensions of simple linear units

• use feature (basis) functions to model nonlinearities

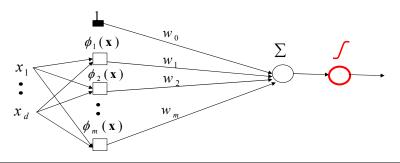
Linear regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x})$$

$$Logistic regression$$

$$f(\mathbf{x}) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}))$$

 $\phi_i(\mathbf{x})$ - an arbitrary function of \mathbf{x}



CS 2750 Machine Learning

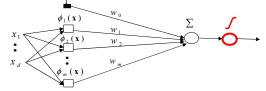
Learning with extended linear units

Feature (basis) functions model nonlinearities

Linear regression

Logistic regression

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}) \qquad f(\mathbf{x}) = g(w_0 + \sum_{j=1}^m w_j \phi_j(\mathbf{x}))$$

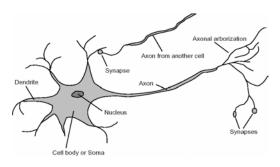


Important property:

• The same problem as learning of the weights for linear units, the input has changed-but the weights are linear in the new input **Problem:** too many weights to learn

Multi-layered neural networks

- Alternative way to introduce nonlinearities to regression/classification models
- Idea: Cascade several simple neural models with logistic units. Much like neuron connections.



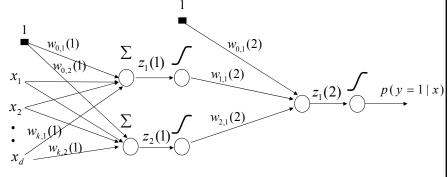
CS 2750 Machine Learning

Multilayer neural network

Also called a multilayer perceptron (MLP)

Cascades multiple logistic regression units

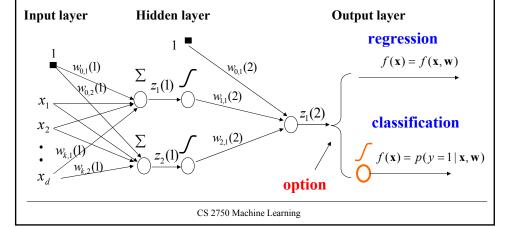
Example: (2 layer) classifier with non-linear decision boundaries



Input layer Hidden layer Output layer

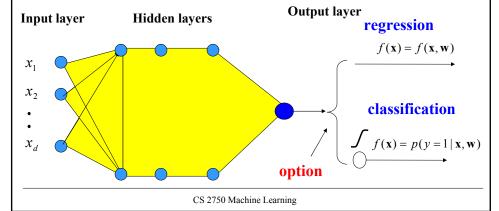
Multilayer neural network

- Models non-linearities through logistic regression units
- Can be applied to both regression and binary classification problems



Multilayer neural network

- Non-linearities are modeled using multiple hidden logistic regression units (organized in layers)
- The output layer determines whether it is a regression or a binary classification problem

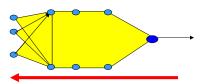


Learning with MLP

- How to learn the parameters of the neural network?
- · Gradient descent algorithm
 - Weight updates based on the error: $J(D, \mathbf{w})$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla_{\mathbf{w}} J(D, \mathbf{w})$$

- We need to compute gradients for weights in all units
- Can be computed in one backward sweep through the net !!!



• The process is called back-propagation

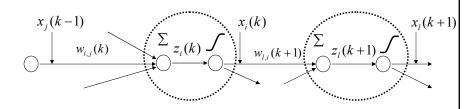
CS 2750 Machine Learning

Backpropagation

(k-1)-th level

k-th level

(k+1)-th level



- $x_i(k)$ output of the unit i on level k
- $z_i(k)$ input to the sigmoid function on level k
- $w_{i,j}(k)$ weight between units j and i on levels (k-1) and k

$$z_i(k) = w_{i,0}(k) + \sum_j w_{i,j}(k)x_j(k-1)$$

$$x_i(k) = g(z_i(k))$$

Backpropagation

Update weight $w_{i,i}(k)$ using a data point $D = \{\langle \mathbf{x}, y \rangle\}$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J(D, \mathbf{w})$$

Let
$$\delta_i(k) = \frac{\partial}{\partial z_i(k)} J(D, \mathbf{w})$$

Then:
$$\frac{\partial}{\partial w_{i,j}(k)} J(D, \mathbf{w}) = \frac{\partial J(D, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

S.t. $\delta_i(k)$ is computed from $x_i(k)$ and the next layer $\delta_i(k+1)$

$$\delta_i(k) = \left[\sum_{l} \delta_l(k+1) w_{l,i}(k+1)\right] x_i(k) (1 - x_i(k))$$

Last unit (is the same as for the regular linear units):

$$\delta_i(K) = -\sum_{i=1}^{n} (y_i - f(\mathbf{x}_i, \mathbf{w}))$$

It is the same for the classification with the log-likelihood measure of fit and linear regression with least-squares error!!!

CS 2750 Machine Learning

Learning with MLP

- Gradient descent algorithm
 - Weight update:

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J(D, \mathbf{w})$$

$$\frac{\partial}{\partial w_{i,j}(k)} J(D, \mathbf{w}) = \frac{\partial J(D, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

 $x_i(k-1)$ - j-th output of the (k-1) layer

 $\delta_i(k)$ - derivative computed via backpropagation

 α - a learning rate

Learning with MLP

- Online gradient descent algorithm
 - Weight update:

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J_{\text{online}}(D_u, \mathbf{w})$$

$$\frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w}) = \frac{\partial J_{online}(D_u, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

 $x_{j}(k-1)$ - j-th output of the (k-1) layer $\delta_{i}(k)$ - derivative computed via backpropagation

- a learning rate

CS 2750 Machine Learning

Online gradient descent algorithm for MLP

Online-gradient-descent (*D, number of iterations*)

Initialize all weights $w_{i,j}(k)$

for i=1:1: number of iterations

select a data point $D_u = \langle x, y \rangle$ from Ddo

set learning rate α

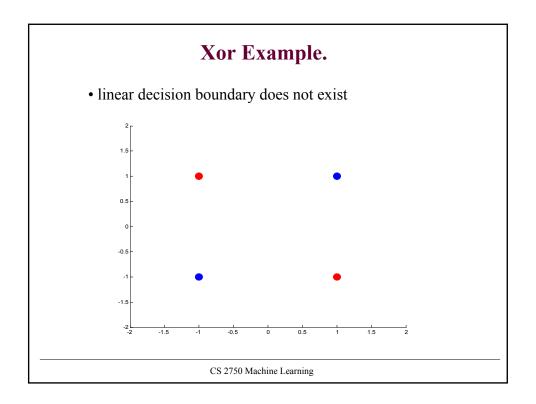
 $x_i(k)$ for each unit **compute** outputs

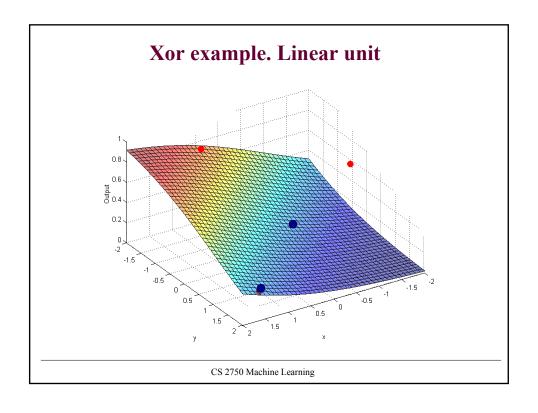
compute derivatives $\delta_i(k)$ via backpropagation update all weights (in parallel)

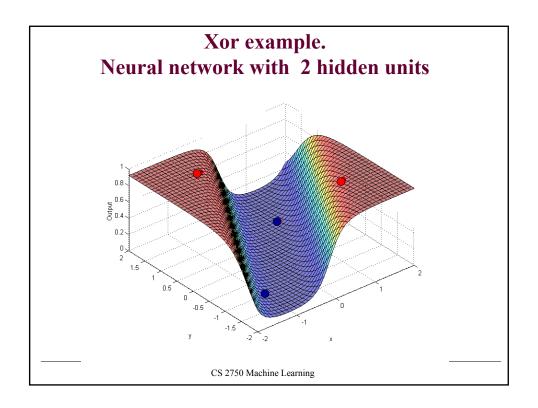
$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

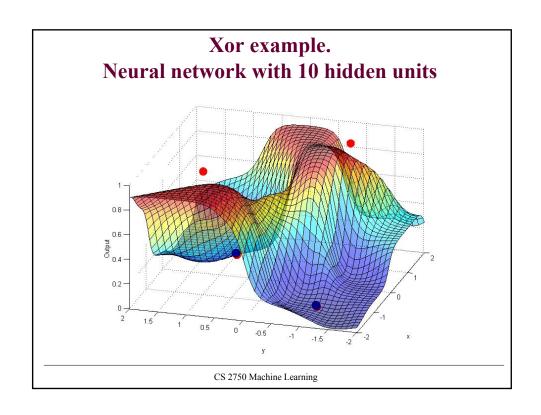
end for

return weights w









MLP in practice

- Optical character recognition digits 20x20
 - Automatic sorting of mails
 - 5 layer network with multiple output functions

