
1

CS 2750 Machine Learning

CS 2750 Machine Learning
Lecture 10

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Evaluation of classifiers
MLPs

CS 2750 Machine Learning

Evaluation

For any data set we use to test the model we can build a 
confusion matrix:
– Counts of examples with:
– class label          that are classified with a label
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Evaluation

For any data set we use to test the model we can build a 
confusion matrix:

Error: ?

agreement

predict

target

54200
171401

01

=
=

==

α
α

ωω
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Evaluation

For any data set we use to test the model we can build a 
confusion matrix: 

Error: = 37/231
Accuracy = 1- Error = 194/231
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Evaluation for binary classification

Entries in the confusion matrix for binary classification have 
names: 
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TP:  True positive (hit)
FP: False positive (false alarm)
TN: True negative (correct rejection)
FN: False negative (a miss)
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Additional statistics

• Sensitivity (recall)

• Specificity

• Positive predictive value (precision)

• Negative predictive value
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Binary classification: additional statistics

• Confusion matrix

Row and column quantities:
– Sensitivity (SENS)
– Specificity (SPEC)
– Positive predictive value (PPV)
– Negative predictive value (NPV)
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Binary decisions: ROC

• Probabilities:
– SENS
– SPEC
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Receiver Operating Characteristic (ROC)
• ROC curve plots :

1-SP=
for different x*
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ROC curve
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Receiver operating characteristic

• ROC 
– shows the discriminability between the two classes under 

different decision biases
• Decision bias 

– can be changed using different loss function

CS 2750 Machine Learning

Zero-one loss function

• Misclassification error
– Based on the zero-one loss function

• Any misclassified example counts as 1
• Correctly classified example counts as 0
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General loss function

• Error function based on a more general loss function
– Different misclassifications have different weight (loss)
– our choice
– true label
– loss for classification

Example:
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Bayesian decision theory

• More general loss function
– Different misclassifications have different weight (loss)

• Expected loss for the classification choice

– Also called conditional risk
• Decision rule:

– Chooses label (action) according to the input
• The optimal decision rule
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Bayesian decision theory

• The optimal decision rule

How to modify classifiers to handle different loss?
• Discriminative models:

– Directly optimize the parameters according to the new loss 
function 

• Generative models:
– Learn probabilities as before
– Decisions about classes are biased to minimize the 

empirical loss (as seen above)
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Calculating the loss for data

• Confusion matrix:
– Counts of examples with:
– class label          that are classified with a label

• Loss
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Multilayer neural networks

CS 2750 Machine Learning

Linear units

Logistic regressionLinear regression

∑
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Limitations of basic linear units

Logistic regressionLinear regression

∑
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Regression with the quadratic model.

Limitation: linear hyper-plane only
• a non-linear surface can be better 
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Classification with the linear model.   

Logistic regression model defines a linear decision boundary
• Example: 2 classes (blue and red points)
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Linear decision boundary
• logistic regression model is not optimal, but not that bad
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When logistic regression fails?

• Example in which the logistic regression model fails
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Limitations of linear units. 
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• Logistic regression does not work for parity functions
- no linear decision boundary exists

Solution: a model of a non-linear decision boundary
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Extensions of simple linear units

)()(
1

0 xx j

m

j
jwwf φ∑

=

+=

∑)(1 xφ

)(2 xφ

)( xmφ

1

1x

0w

1w
2w

mwdx

)(xjφ - an arbitrary function of x

• use feature (basis) functions to model nonlinearities

))(()(
1

0 xx j

m

j
jwwgf φ∑

=

+=

Linear regression Logistic regression

CS 2750 Machine Learning

Learning with extended linear units
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Important property:
• The same problem as learning of the weights for linear units , the 
input has changed– but the weights are linear in the new input
Problem: too many weights to learn
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Multi-layered neural networks

• Alternative way to introduce nonlinearities to 
regression/classification models

• Idea: Cascade several simple neural models with logistic 
units. Much like neuron connections.

CS 2750 Machine Learning

Multilayer neural network

Hidden layer Output layerInput layer

Cascades multiple logistic regression units
Also called a multilayer perceptron (MLP)
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Example: (2 layer) classifier with non-linear decision boundaries
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Multilayer neural network

• Models non-linearities through logistic regression units
• Can be applied to both regression and binary classification

problems 
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Multilayer neural network

• Non-linearities are modeled using multiple hidden logistic 
regression units (organized in layers)

• The output layer determines whether it is a regression or a 
binary classification problem
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Learning with MLP

• How to learn the parameters of the neural network?
• Gradient descent algorithm

– Weight updates based on the error:

• We need to compute gradients for weights in all units
• Can be computed in one backward sweep through the net !!!

• The process is called back-propagation
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Backpropagation

∑
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Backpropagation
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Learning with MLP

• Gradient descent algorithm
– Weight update:
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α - a learning rate
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Learning with MLP

• Online gradient descent algorithm
– Weight update:
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Online gradient descent algorithm for MLP

Online-gradient-descent (D, number of iterations)
Initialize all weights
for i=1:1: number of iterations

do      select a data point Du=<x,y> from D
set  learning rate 
compute outputs                for each unit
compute derivatives           via backpropagation
update all weights (in parallel)

end for
return weights w
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Xor Example. 
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• linear decision boundary does not exist

CS 2750 Machine Learning

Xor example. Linear unit
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Xor example.  
Neural network with  2 hidden units

CS 2750 Machine Learning

Xor example. 
Neural network with 10 hidden units
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MLP in practice

• Optical character recognition – digits 20x20
– Automatic sorting of mails
– 5 layer network with multiple output functions

10 outputs (0,1,…9)
…

20x20 = 400  inputs

5          10                   3000

4        300                   1200

3       1200                50000

2         784                  3136

1        3136               78400

layer      Neurons        Weights


