CS 2750 Machine Learning Lecture 1

Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

CS 2750 Machine Learning

Administration

Instructor:

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

TA:

Michael Moeng

moeng@cs.pitt.edu

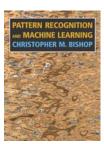
5802 Sennott Square

Office hours: Tuesday 11-12am and 2-4pm

Administration

Study material

- Handouts, your notes and course readings
- Primary textbook:



 Chris. Bishop. Pattern Recognition and Machine Learning. Springer, 2006.

CS 2750 Machine Learning

Administration

Study material

- Other books:
 - Friedman, Hastie, Tibshirani. Elements of statistical learning. Springer, 2001.
 - Duda, Hart, Stork. Pattern classification. 2nd edition. J
 Wiley and Sons, 2000.
 - C. Bishop. Neural networks for pattern recognition. Oxford U. Press, 1996.
 - T. Mitchell. Machine Learning. McGraw Hill, 1997
 - J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2001.

Administration

- Homeworks: weekly
 - Programming tool: Matlab (CSSD machines and labs)
 - Matlab Tutorial: next week
- Exams:
 - Midterm (March)
 - **Final** (April)
- Final project:
 - **Proposals** (March)
 - Written report + Oral presentation (end of the semester)
- Lectures:
 - Activity and random short quizzes testing the understanding of basic concepts from previous lectures

CS 2750 Machine Learning

Tentative topics

- Learning.
- Density estimation.
- Linear models for regression and classification.
- Multi-layer neural networks.
- Support vector machines. Kernel methods.
- Learning Bayesian networks.
- Clustering. Latent variable models.
- Dimensionality reduction. Feature extraction.
- Ensemble methods. Mixture models. Bagging and boosting.
- Hidden Markov models.
- Reinforcement learning

Machine Learning

- The field of machine learning studies the design of computer programs (agents) capable of learning from past experience or adapting to changes in the environment
- The need for building agents capable of learning is everywhere
 - predictions in medicine,
 - text and web page classification,
 - speech recognition,
 - image/text retrieval,
 - commercial software

CS 2750 Machine Learning

Learning

Learning process:

Learner (a computer program) processes data **D** representing past experiences and tries to either develop an appropriate response to future data, or describe in some meaningful way the data seen

Example:

Learner sees a set of patient cases (patient records) with corresponding diagnoses. It can either try:

- to predict the presence of a disease for future patients
- describe the dependencies between diseases, symptoms

Types of learning

- Supervised learning
 - Learning mapping between input x and desired output y
 - Teacher gives me y's for the learning purposes
- Unsupervised learning
 - Learning relations between data components
 - No specific outputs given by a teacher
- Reinforcement learning
 - Learning mapping between input x and desired output y
 - Critic does not give me y's but instead a signal (reinforcement) of how good my answer was
- Other types of learning:
 - Concept learning, explanation-based learning, etc.

CS 2750 Machine Learning

Supervised learning

Data:
$$D = \{d_1, d_2, ..., d_n\}$$
 a set of n examples $d_i = \langle \mathbf{x}_i, y_i \rangle$

 \mathbf{x}_i is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping $f: X \to Y$

s.t.
$$y_i \approx f(x_i)$$
 for all $i = 1,..., n$

Two types of problems:

• Regression: X discrete or continuous →

Y is continuous

• Classification: X discrete or continuous →

Y is discrete

Supervised learning examples

• Regression: Y is continuous

Debt/equity
Earnings — company stock price
Future product orders

Classification: Y is discrete

Handwritten digit (array of 0,1s)

CS 2750 Machine Learning

Unsupervised learning

• **Data:** $D = \{d_1, d_2, ..., d_n\}$ $d_i = \mathbf{x}_i$ vector of values No target value (output) y

- Objective:
 - learn relations between samples, components of samples

Types of problems:

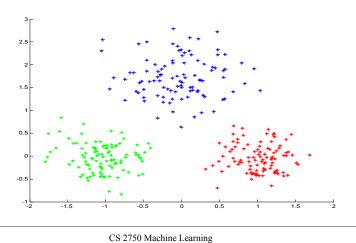
• Clustering

Group together "similar" examples, e.g. patient cases

- Density estimation
 - Model probabilistically the population of samples

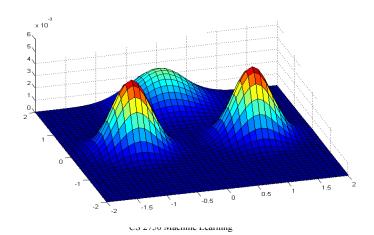
Unsupervised learning example.

• **Density estimation.** We want to build the probability model of a population from which we draw samples $d_i = \mathbf{x}_i$



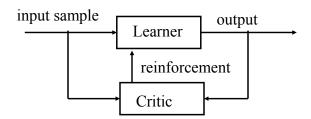
Unsupervised learning. Density estimation

- A probability density of a point in the two dimensional space
 - Model used here: Mixture of Gaussians



Reinforcement learning

- We want to learn: $f: X \to Y$
- We see samples of \mathbf{x} but not y
- Instead of y we get a feedback (reinforcement) from a **critic** about how good our output was

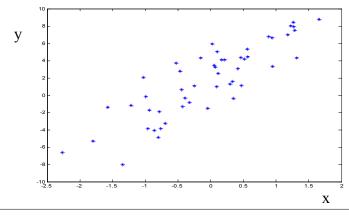


• The goal is to select outputs that lead to the best reinforcement

CS 2750 Machine Learning

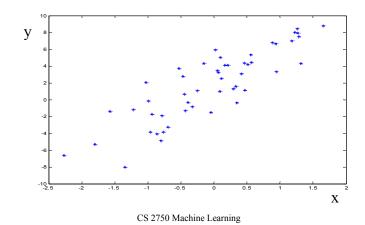
Learning

- Assume we see examples of pairs (\mathbf{x}, y) and we want to learn the mapping $f: X \to Y$ to predict future ys for values of \mathbf{x}
- We get the data what should we do?



Learning bias

- **Problem:** many possible functions $f: X \to Y$ exists for representing the mapping between \mathbf{x} and \mathbf{y}
- Which one to choose? Many examples still unseen!

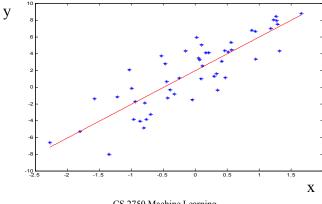


Learning bias

Problem is easier when we make an assumption about the model, say, $f(x) = ax + b + \varepsilon$

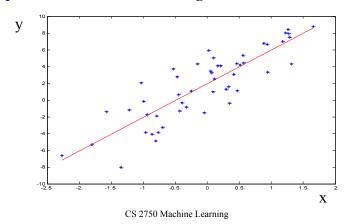
 $\varepsilon = N(0, \sigma)$ - random (normally distributed) noise

Restriction to a linear model is an example of learning bias



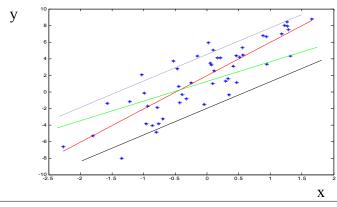
Learning bias

- **Bias** provides the learner with some basis for choosing among possible representations of the function.
- Forms of bias: constraints, restrictions, model preferences
- Important: There is no learning without a bias!



Learning bias

- Choosing a parametric model or a set of models is not enough Still too many functions $f(x) = ax + b + \varepsilon$ $\varepsilon = N(0, \sigma)$
 - One for every pair of parameters a, b



Fitting the data to the model

- We are interested in finding the **best set** of model parameters **Objective:** Find the set of parameters that:
- reduces the misfit between the model and observed data
- Or, (in other words) that explain the data the best

Error function:

Measure of misfit between the data and the model

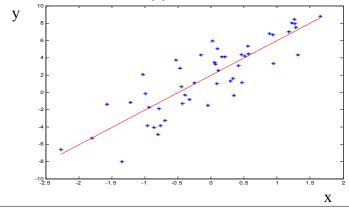
- Examples of error functions:
 - Average square error $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$
 - Average misclassification error $\frac{1}{n} \sum_{i=1}^{n} 1_{y_i \neq f(x_i)}$

Average # of misclassified cases

CS 2750 Machine Learning

Fitting the data to the model

- Linear regression
 - Least squares fit with the linear model
 - minimizes $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$



Typical learning

Three basic steps:

• Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

• Select the error function to be optimized

E.g.
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error represent the best fit of the model to the data

But there are problems one must be careful about ...