CS 2750 Machine Learning Lecture 3

Density estimation

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

CS 2750 Machine Learning

<section-header>

<section-header><section-header><list-item><section-header><section-header><section-header><section-header><list-item><list-item><list-item>

Solutions for overfitting

How to make the learner avoid the overfit?

- Assure sufficient number of samples in the training set
 May not be possible (small number of examples)
- Hold some data out of the training set = validation set
 - Train (fit) on the training set (w/o data held out);
 - Check for the generalization error on the validation set, choose the model based on the validation set error (random resampling validation techniques)
- Regularization (Occam's Razor)
 - Penalize for the model complexity (number of parameters)
 - Explicit preference towards simple models

Learning
Learning = optimization problem
• Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
Parameter optimizations
• Gradient descent, Conjugate gradient (1 st order method)
• Newton-Rhapson (2 nd order method)
• Levenberg-Marquard
Some can be carried on-line on a sample by sample basis
Combinatorial optimizations (over discrete spaces):
Hill-climbing
Simulated-annealing
Genetic algorithms
CS 2750 Machine Learning

Density estimation

Data: $D = \{D_1, D_2, ..., D_n\}$ $D_i = \mathbf{x}_i$ a vector of attribute values **Attributes:** • modeled by random variables $\mathbf{X} = \{X_1, X_2, ..., X_d\}$ with: - **Continuous values** - **Discrete values** E.g. *blood pressure* with numerical values or *chest pain* with discrete values [no-pain, mild, moderate, strong] **Underlying true probability distribution:** $p(\mathbf{X})$

Density estimation

Types of density estimation:

Parametric

- the distribution is modeled using a set of parameters Θ $p(\mathbf{X} | \Theta)$
- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D

Non-parametric

- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor

Semi-parametric

CS 2750 Machine Learning

Learning via parameter estimation

In this lecture we consider **parametric density estimation Basic settings:**

- A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_d\}$
- A model of the distribution over variables in X with parameters Θ : $\hat{p}(\mathbf{X} | \Theta)$
- **Data** $D = \{D_1, D_2, ..., D_n\}$

Objective: find parameters Θ such that $p(\mathbf{X}|\Theta)$ describes data D the best

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

ННТТННТНТНТТТНТННННТННННТ

- Heads: 15
- **Tails:** 10

What would be your choice of the probability of a head ? **Solution:** use frequencies of occurrences to do the estimate

$$\widetilde{\theta} = \frac{15}{25} = 0.6$$

This is **the maximum likelihood estimate** of the parameter θ

The goodness of fit to the data.

Learning: we do not know the value of the parameter θ Our learning goal:

• Find the parameter θ that fits the data D the best? One solution to the "best": Maximize the likelihood

$$P(D \mid \theta) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

Intuition:

• more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit :

Error $(D, \theta) = -P(D \mid \theta)$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$P(D \mid \theta, \xi) = \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)}$$

Maximum likelihood estimate

 $\theta_{\scriptscriptstyle ML} = \arg \max P(D \mid \theta, \xi)$

Optimize log-likelihood (the same as maximizing likelihood) $l(D,\theta) = \log P(D \mid \theta, \xi) = \log \prod_{i=1}^{n} \theta^{x_i} (1-\theta)^{(1-x_i)} = \sum_{i=1}^{n} x_i \log \theta + (1-x_i) \log(1-\theta) = \log \theta \sum_{i=1}^{n} x_i + \log(1-\theta) \sum_{i=1}^{n} (1-x_i)$ $N_1 - \text{number of heads seen} \qquad N_2 - \text{number of tails seen}$

