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Announcements

Next lecture:
 Matlab tutorial

Rules for attending the class:
* Registered for credit

* Registered for audit (only if there are available seats)

Rules for audit:
* Homework assignments
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Data

Data may need a lot of:
* Cleaning
* Preprocessing (conversions)
Cleaning:
— Get rid of errors, noise,
— Removal of redundancies
Preprocessing:
— Renaming
— Rescaling (normalization)
— Discretizations
— Abstraction
— Aggregation
— New attributes
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Data biases

* Watch out for data biases:
— Try to understand the data source

— Itis very easy to derive “unexpected” results when data
used for analysis and learning are biased (pre-selected)

* Results (conclusions) derived for pre-selected data do not

hold in general !!!
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Data biases

Example 1: Risks in pregnancy study
* Sponsored by DARPA at military hospitals

* Study of a large sample of pregnant woman who visited
military hospitals

* Conclusion: the factor with the largest impact on reducing
risks during pregnancy (statistically significant) is a pregnant
woman being single

+ Single woman - the smallest risk
* What is wrong?
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Data

Example 2: Stock market trading (example by Andrew Lo)

— Data on stock performances of companies traded on stock
market over past 25 year

— Investment goal: pick a stock to hold long term

— Proposed strategy: invest in a company stock with an [PO
corresponding to a Carmichael number

- Evaluation result: excellent return over 25 years

- Where the magic comes from?
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Feature selection

* The size (dimensionality) of a sample can be enormous

x, = (x,x7 ., x") d - very large
* Example: document classification
— 10,000 different words

— Inputs: counts of occurrences of different words

— Too many parameters to learn (not enough samples to
justify the estimates the parameters of the model)

* Dimensionality reduction: replace inputs with features
— Extract relevant inputs (e.g. mutual information measure)
— PCA — principal component analysis
— Group (cluster) similar words (uses a similarity measure)
* Replace with the group label
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Model selection

* What is the right model to learn?
— E.g what polynomial to use
— A prior knowledge helps a lot, but still a lot of guessing
— Initial data analysis and visualization

* We can make a good guess about the form of the
distribution, shape of the function

* Overfitting problem
— Take into account the bias and variance of error estimates

— Simpler (more biased) model — parameters can be estimated
more reliably (smaller variance of estimates)

— Complex model with many parameters — parameter
estimates are less reliable (large variance of the estimate)
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Solutions for overfitting

How to make the learner avoid the overfit?

» Assure sufficient number of samples in the training set
— May not be possible (small number of examples)

* Hold some data out of the training set = validation set
— Train (fit) on the training set (w/o data held out);

— Check for the generalization error on the validation set,
choose the model based on the validation set error

(random resampling validation techniques)
* Regularization (Occam’s Razor)
— Penalize for the model complexity (number of parameters)
— Explicit preference towards simple models
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Learning

* Learning = optimization problem. Various criteria:

— Mean square error

. 1
w =argmin Error(w)  Error (w) = v > - f(x,w)?

i=1,.N

— Maximum likelihood (ML) criterion

O =arg max P(D |0®) Error (©)=—log P(D | ®)
(€]

— Maximum posterior probability (MAP)
© P(D)
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Learning

Learning = optimization problem
* Optimization problems can be hard to solve. Right choice of a
model and an error function makes a difference.

* Parameter optimizations
* Gradient descent, Conjugate gradient (15 order method)
» Newton-Rhapson (2" order method)
* Levenberg-Marquard
Some can be carried on-line on a sample by sample basis
Combinatorial optimizations (over discrete spaces):
* Hill-climbing
* Simulated-annealing

* Genetic algorithms
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Evaluation.

Simple holdout method.
— Divide the data to the training and test data.
Other more complex methods
— Based on random re-sampling validation schemes:
* cross-validation, random sub-sampling.

What if we want to compare the predictive performance on a
classification or a regression problem for two different
learning methods?

Solution: compare the error results on the test data set

The method with better (smaller) testing error gives a better
generalization error.

But we need statistics to show significance
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Density estimation
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Outline

Outline:

* Density estimation:
— Maximum likelihood (ML)
— Bayesian parameter estimates
— MAP

* Bernoulli distribution.

* Binomial distribution

¢ Multinomial distribution

* Normal distribution
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Density estimation

Data: D= {D,,D,,..,D,}

D, =x, a vector of attribute values

Attributes:

+ modeled by random variables X ={X,, X,

— Continuous values
— Discrete values

E.g. blood pressure with numerical values

or chest pain with discrete values

yees X} with:

[no-pain, mild, moderate, strong]

Underlying true probability distribution:

p(X)
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Density estimation

Data: D:{D19D2""D'1}

D, =x, a vector of attribute values

Objective: try to estimate the underlying ‘true’ probability
distribution over variables X , p(X), using examples in D

true distribution n samples
p(X) D=1D,,D,,..D,}

Standard (iid) assumptions: Samples
» are independent of each other

[E——

estimate
p(X)

* come from the same (identical) distribution (fixed p(X))
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Density estimation

Types of density estimation:

Parametric

* the distribution is modeled using a set of parameters ®
p(X|©)

* Example: mean and covariances of a multivariate normal

* Estimation: find parameters ® describing data D

Non-parametric

* The model of the distribution utilizes all examples in D

» Asif all examples were parameters of the distribution

+ Examples: Nearest-neighbor

Semi-parametric

CS 2750 Machine Learning

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
» A set of random variables X={X,,X,,....,X,}
* A model of the distribution over variables in X
with parameters @ : p(X|0)

e Data D={D,D,,.,D,}

Objective: find parameters @ such that p(X|®) describes data
D the best
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Parameter estimation.

¢ Maximum likelihood (ML)
maximize p(D|0,<)
— yields: one set of parameters ®,
— the target distribution is approximated as:
p(X)=p(X|0,,)

* Bayesian parameter estimation

— uses the posterior distribution over possible parameters

(O] D.E) = p(D10,5)p©]s)
p(D <)

— Yields: all possible settings of @ (and their “weights”)

— The target distribution is approximated as:
P(X) = p(X|D) = [ p(X |©)p(®]|D,£)d®
o
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Parameter estimation.

Other possible criteria:
* Maximum a posteriori probability (MAP)
maximize p(®|D,<&) (mode of the posterior)
— Yields: one set of parameters @M AP
— Approximation:
p(X)=p(X|0,,,)
* Expected value of the parameter
0= E(©) (mean of the posterior)
— Expectation taken with regard to posterior p(® | D,&)
— Yields: one set of parameters

— Approximation:
p(X) = p(X]0)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x, such that
* head x =1
* tail X, = 0

Model: probability of ahead @
probability of a tail 1-0)
Objective:
We would like to estimate the probability of a head 6
from data
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Parameter estimation. Example.

* Assume the unknown and possibly biased coin
« Probability of the head is 6@
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your estimate of the probability of a head ?

0 =2
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Parameter estimation. Example

* Assume the unknown and possibly biased coin
« Probability of the head is €
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate
7=2_0s
25
This is the maximum likelihood estimate of the parameter €
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Probability of an outcome

Data: D asequence of outcomes X; such that
* head x, =1
. tail %, =0
Model: probability of a head €
probability of a tail ~ (1-6)

Assume: we know the probability 6
Probability of an outcome of a coin flip x,

P(x,|0)=0"(1-0)"" <= Bernoulli distribution

— Combines the probability of a head and a tail

— So that x, is going to pick its correct probability
— Gives @ for x, =1

— Gives (1-6) for x, =0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
* tail x, =0
Model: probability of ahead @
probability of a tail ~ (1-6)
Assume: a sequence of independent coin flips
D=HHTHTH (encoded as D=110101)

What is the probability of observing the data sequence D:
P(D|68)="?
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

* head x =1

. tail X =0
Model: probability of ahead @

probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:

P(D|0)=060(-0)0(1-0)0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that

* head x =1

* tail x, =0
Model: probability of ahead @

probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D= 110101

What is the probability of observing a data sequence D:

P(D|6)=00(1-0)0(1-0)0

likelihood of the data
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
* head x =1
. tail % =0
Model: probability of ahead @
probability of a tail ~ (1-6)
Assume: a sequence of coin flips D=HHTHTH
encoded as D=110101

What is the probability of observing a data sequence D:
P(D|60)=600(1-6)0(1-6)0
6
PD|O) =[]0 "1-0)"
i=1

Can be rewritten using_the Bernoulli distribution:
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The goodness of fit to the data.

Learning: we do not know the value of the parameter &
Our learning goal:

* Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelithood

PDIO)=]]O"(1-6)""
i=1

Intuition:
» more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data

fit :
Error (D,0)=—-P(D |0)
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Example: Bernoulli distribution.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes x, such that
* head x =1
s tail x,=0
Model: probability of ahead €
probability of a tail ~ (1-6)
Objective:
We would like to estimate the probability of a head )

Probability of an outcome X,
P(x,10)=60"(1-0)"" Bernoulli distribution
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Maximum likelihood (ML) estimate.
Likelihood of data: n
P(D|0,5)=]]o"(1-6)""
Maximum likelihood estimate -

0,, =argmax P(D|0,¢)
Optimize log-likelihoodg (the same as maximizing likelihood)

I(D,e) = IOgP(D | H,é:) = IOgHQX,- (1_9)(1—xi) _

n i=l 5 n
D x,logf+(1—x,)logl—6) =logf>_x, +log1-6)> (1-x,)
i=l1 i=1

i=1

N, - number of heads seen N, - number of tails seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
[(D,0)=N,logf+N,log(1-0)
Set derivative to zero
ol(D,0) _ﬁ_L_
06 0 (1-6)

Solving 0=

ML Solution: 0,, = N _ N
N
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Maximum likelihood estimate. Example

* Assume the unknown and possibly biased coin
« Probability of the head is €
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of a head and a tail?
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Maximum likelihood estimate. Example

* Assume the unknown and possibly biased coin
« Probability of the head is 6
* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10
What is the ML estimate of the probability of head and tail ?

Head: HML=ﬂ=L=£=O6
N N +N, 25

Tail: (1—¢9ML)=£=L=&=04
N N +N, 25
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