CS 2750 Machine Learning

 Lecture 3
Density estimation

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Announcements

Next lecture:

- Matlab tutorial

Rules for attending the class:

- Registered for credit
- Registered for audit (only if there are available seats)

Rules for audit:

- Homework assignments

Review

Design cycle

Data

Data may need a lot of:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes

Data biases

- Watch out for data biases:
- Try to understand the data source
- It is very easy to derive "unexpected" results when data used for analysis and learning are biased (pre-selected)
- Results (conclusions) derived for pre-selected data do not hold in general !!!

Data biases

Example 1: Risks in pregnancy study

- Sponsored by DARPA at military hospitals
- Study of a large sample of pregnant woman who visited military hospitals
- Conclusion: the factor with the largest impact on reducing risks during pregnancy (statistically significant) is a pregnant woman being single
- Single woman \rightarrow the smallest risk
- What is wrong?

Data

Example 2: Stock market trading (example by Andrew Lo)

- Data on stock performances of companies traded on stock market over past 25 year
- Investment goal: pick a stock to hold long term
- Proposed strategy: invest in a company stock with an IPO corresponding to a Carmichael number
- Evaluation result: excellent return over 25 years
- Where the magic comes from?

Feature selection

- The size (dimensionality) of a sample can be enormous

$$
x_{i}=\left(x_{i}^{1}, x_{i}^{2}, . ., x_{i}^{d}\right) \quad \ldots \quad \text { - very large }
$$

- Example: document classification
- 10,000 different words
- Inputs: counts of occurrences of different words
- Too many parameters to learn (not enough samples to justify the estimates the parameters of the model)
- Dimensionality reduction: replace inputs with features
- Extract relevant inputs (e.g. mutual information measure)
- PCA - principal component analysis
- Group (cluster) similar words (uses a similarity measure)
- Replace with the group label

Model selection

- What is the right model to learn?
- E.g what polynomial to use
- A prior knowledge helps a lot, but still a lot of guessing
- Initial data analysis and visualization
- We can make a good guess about the form of the distribution, shape of the function
- Overfitting problem
- Take into account the bias and variance of error estimates
- Simpler (more biased) model - parameters can be estimated more reliably (smaller variance of estimates)
- Complex model with many parameters - parameter estimates are less reliable (large variance of the estimate)

Solutions for overfitting

How to make the learner avoid the overfit?

- Assure sufficient number of samples in the training set
- May not be possible (small number of examples)
- Hold some data out of the training set = validation set
- Train (fit) on the training set (w/o data held out);
- Check for the generalization error on the validation set, choose the model based on the validation set error (random resampling validation techniques)
- Regularization (Occam's Razor)
- Penalize for the model complexity (number of parameters)
- Explicit preference towards simple models

Learning

- Learning =optimization problem. Various criteria:
- Mean square error
$\mathbf{w}^{*}=\arg \min _{\mathbf{w}} \operatorname{Error}(\mathbf{w}) \quad \operatorname{Error}(\mathbf{w})=\frac{1}{N} \sum_{i=1, \ldots, N}\left(y_{i}-f\left(x_{i}, \mathbf{w}\right)\right)^{2}$
- Maximum likelihood (ML) criterion
$\Theta^{*}=\arg \max P(D \mid \Theta) \quad \quad \operatorname{Error}(\Theta)=-\log P(D \mid \Theta)$
- Maximum posterior probability (MAP)
$\Theta^{*}=\underset{\Theta}{\arg \max } P(\Theta \mid D) \quad P(\Theta \mid D)=\frac{P(D \mid \Theta) P(\Theta)}{P(D)}$

Learning

Learning = optimization problem

- Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
- Parameter optimizations
- Gradient descent, Conjugate gradient ($1^{\text {st }}$ order method)
- Newton-Rhapson (2 $2^{\text {nd }}$ order method)
- Levenberg-Marquard

Some can be carried on-line on a sample by sample basis
Combinatorial optimizations (over discrete spaces):

- Hill-climbing
- Simulated-annealing
- Genetic algorithms

Evaluation.

- Simple holdout method.
- Divide the data to the training and test data.
- Other more complex methods
- Based on random re-sampling validation schemes:
- cross-validation, random sub-sampling.
- What if we want to compare the predictive performance on a classification or a regression problem for two different learning methods?
- Solution: compare the error results on the test data set
- The method with better (smaller) testing error gives a better generalization error.
- But we need statistics to show significance

Density estimation

CS 2750 Machine Learning

Outline

Outline:

- Density estimation:
- Maximum likelihood (ML)
- Bayesian parameter estimates
- MAP
- Bernoulli distribution.
- Binomial distribution
- Multinomial distribution
- Normal distribution

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values

Attributes:

- modeled by random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$ with:
- Continuous values
- Discrete values
E.g. blood pressure with numerical values or chest pain with discrete values [no-pain, mild, moderate, strong]
Underlying true probability distribution:

$$
p(\mathbf{X})
$$

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: try to estimate the underlying 'true' probability distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(\mathbf{X})$)

Density estimation

Types of density estimation:

Parametric

- the distribution is modeled using a set of parameters Θ

$$
p(\mathbf{X} \mid \Theta)
$$

- Example: mean and covariances of a multivariate normal
- Estimation: find parameters Θ describing data D Non-parametric
- The model of the distribution utilizes all examples in D
- As if all examples were parameters of the distribution
- Examples: Nearest-neighbor

Semi-parametric

Learning via parameter estimation

In this lecture we consider parametric density estimation

Basic settings:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in \boldsymbol{X} with parameters Θ : $\hat{p}(\mathbf{X} \mid \Theta)$
- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

Objective: find parameters Θ such that $p(\mathbf{X} \mid \Theta)$ describes data D the best

Parameter estimation.

- Maximum likelihood (ML)
maximize $p(D \mid \Theta, \xi)$
- yields: one set of parameters $\Theta_{M L}$
- the target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M L}\right)
$$

- Bayesian parameter estimation
- uses the posterior distribution over possible parameters

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
$$

- Yields: all possible settings of Θ (and their "weights")
- The target distribution is approximated as:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid D)=\int_{\boldsymbol{\Theta}} p(X \mid \boldsymbol{\Theta}) p(\boldsymbol{\Theta} \mid D, \xi) d \boldsymbol{\Theta}
$$

Parameter estimation.

Other possible criteria:

- Maximum a posteriori probability (MAP)
maximize $p(\boldsymbol{\Theta} \mid D, \xi) \quad$ (mode of the posterior)
- Yields: one set of parameters $\boldsymbol{\Theta}_{\text {MAP }}$
- Approximation:

$$
\hat{p}(\mathbf{X})=p\left(\mathbf{X} \mid \boldsymbol{\Theta}_{M A P}\right)
$$

- Expected value of the parameter

$$
\hat{\boldsymbol{\Theta}}=E(\boldsymbol{\Theta})
$$

(mean of the posterior)

- Expectation taken with regard to posterior $p(\boldsymbol{\Theta} \mid D, \xi)$
- Yields: one set of parameters
- Approximation:

$$
\hat{p}(\mathbf{X})=p(\mathbf{X} \mid \hat{\boldsymbol{\Theta}})
$$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ
probability of a tail $(1-\theta)$
Objective:
We would like to estimate the probability of a head $\hat{\theta}$ from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

HHTTHHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your estimate of the probability of a head ?

$$
\widetilde{\theta}=?
$$

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate

$$
\widetilde{\theta}=\frac{15}{25}=0.6
$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ
Probability of an outcome of a coin flip x_{i}
$P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \longleftarrow \quad$ Bernoulli distribution

- Combines the probability of a head and a tail
- So that x_{i} is going to pick its correct probability
- Gives θ for $x_{i}=1$
- Gives $(1-\theta)$ for $x_{i}=0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of independent coin flips

$$
D=\mathbf{H} \text { H T H T H } \quad \text { (encoded as } D=110101)
$$

What is the probability of observing the data sequence \mathbf{D} :

$$
P(D \mid \theta)=?
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $\quad(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T Н Т Н encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
\begin{aligned}
& P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta \\
& \text { likelihood of the data }
\end{aligned}
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $D=110101$
What is the probability of observing a data sequence \mathbf{D} :

$$
\begin{aligned}
& P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta \\
& P(D \mid \theta)=\prod_{i=1}^{6} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data.

Learning: we do not know the value of the parameter θ
Our learning goal:

- Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$
P(D \mid \theta)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Intuition:

- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data fit :

$$
\operatorname{Error}(D, \theta)=-P(D \mid \theta)
$$

Example: Bernoulli distribution.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Objective:
We would like to estimate the probability of a head $\hat{\theta}$
Probability of an outcome x_{i}

$$
P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \quad \text { Bernoulli distribution }
$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$
P(D \mid \theta, \xi)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Maximum likelihood estimate

$$
\theta_{M L}=\underset{\theta}{\arg \max } P(D \mid \theta, \xi)
$$

Optimize log-likelihood (the same as maximizing likelihood) $l(D, \theta)=\log P(D \mid \theta, \xi)=\log \prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}=$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$
l(D, \theta)=N_{1} \log \theta+N_{2} \log (1-\theta)
$$

Set derivative to zero

$$
\frac{\partial l(D, \theta)}{\partial \theta}=\frac{N_{1}}{\theta}-\frac{N_{2}}{(1-\theta)}=0
$$

Solving

$$
\theta=\frac{N_{1}}{N_{1}+N_{2}}
$$

ML Solution: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}$

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTT TH THHHHTHHHHT

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of head and tail?

Head: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}=\frac{15}{25}=0.6$
Tail: $\quad\left(1-\theta_{M L}\right)=\frac{N_{2}}{N}=\frac{N_{2}}{N_{1}+N_{2}}=\frac{10}{25}=0.4$

