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Decision trees

• An alternative approach to classification:
– Partition the input space to regions
– Classify independently in every region
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CS 2750 Machine Learning

Decision trees
• The partitioning idea is used in the decision tree model:

– Split the space recursively according to inputs in x
– Classify (assign class label) at the bottom of the tree
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Decision trees

How to construct the decision tree?
• Top-bottom algorithm:

– Find the best split condition (quantified based on the 
impurity measure) on the training set

– Stops when no improvement possible
• Impurity measure:

– Measures how well are the two classes separated 
– Ideally we would like to separate all 0s and 1

• Splits of finite vs. continuous value attributes

Continuous value attributes conditions: 5.03 ≤x
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Impurity measure

Let

• Impurity measure defines how well are the classes in the 
training dataset separated

• In general the impurity measure should satisfy:
– Largest when data are split evenly to classes

– Should be 0 when all data belong to the same class
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Impurity measures

• There are various impurity measures used in the literature
– Entropy based measure (Quinlan, C4.5)

– Gini measure (Breiman, CART)
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Decision-tree building

• Gain due to split – expected reduction in the impurity 
measure (entropy example)
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Decision tree learning

• Greedy learning algorithm:
Repeat until no or small improvement in the purity
– Find the attribute with the highest gain
– Add the attribute to the tree and split the set accordingly

• Builds the tree in the top-down fashion
– Gradually expands the leaves of the partially built tree

• The method is greedy
– It looks at a single attribute and gain in each step
– May fail when the combination of attributes is needed to  

improve the purity (parity functions)
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Decision tree learning

• Limitations of greedy methods
Cases in which a combination of two or more attributes 

improves the impurity
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Decision tree learning
By reducing the impurity measure we can grow very large trees
Problem: Overfitting
• We may split and classify very well the training set, but we may

do worse in terms of  the generalization error 
Solutions to the overfitting problem:
• Solution 1.

– Prune branches of the tree built in the first phase
– Use internal validation set to test for the overfit

• Solution 2. 
– Test for the overfit in the tree building phase
– Stop building the tree when performance on the validation set 

deteriorates 
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Mixture of experts model

• Ensamble methods:
– Use a combination of simpler learners to improve 

predictions
• Mixture of expert model:

– Different input regions covered with different learners
– A “soft” switching between learners

• Mixture of experts
Expert = learner

x
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Mixture of experts model
• Gating network : decides what expert to use
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Learning mixture of experts
• Learning consists of two tasks:

– Learn the parameters of individual expert networks
– Learn the parameters of the gating network

• Decides where to make a split
• Assume: gating functions give probabilities

• Based on the probability we partition the space
– partitions belongs to different experts 

• How to model the gating network? 
– A multiway classifier model:

• softmax model
• a generative classifier model

1)(),...(),(0 21 ≤≤ xxx kggg ∑
=

=
k

u
ug

1
1)(x



8

CS 2750 Machine Learning

Learning mixture of experts
• Assume we have a set of linear experts

• Assume a softmax gating network

• Likelihood of  y (assumed that errors for different experts are 
normally distributed with the same variance)
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Learning mixture of experts
Gradient learning.

On-line update rule for parameters        of expert i
– If we know the expert that is responsible for x

– If we do not know the expert
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Learning mixtures of experts

Gradient methods
• On-line learning of gating network  parameters

• The learning with conditioned mixtures can be extended to 
learning of parameters of an arbitrary expert network
– e.g. logistic regression, multilayer neural network
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Learning mixture of experts
EM algorithm offers an alternative way to learn the mixture
Algorithm:
Initialize parameters

Repeat 
Set 
1. Expectation step

2. Maximization step

until  no or small improvement in  
– Hidden variables are identities of expert networks 

responsible for (x,y) data points 
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