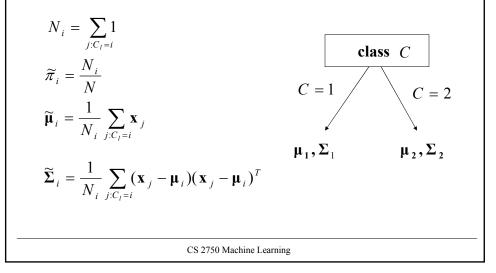
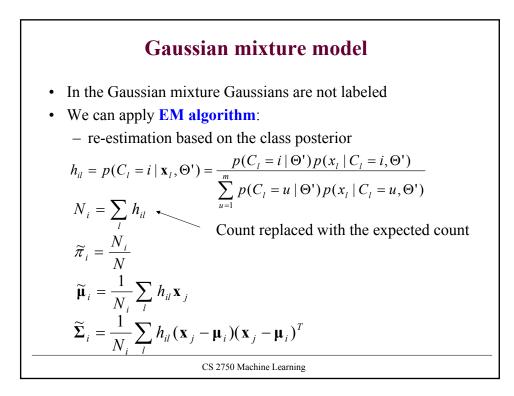


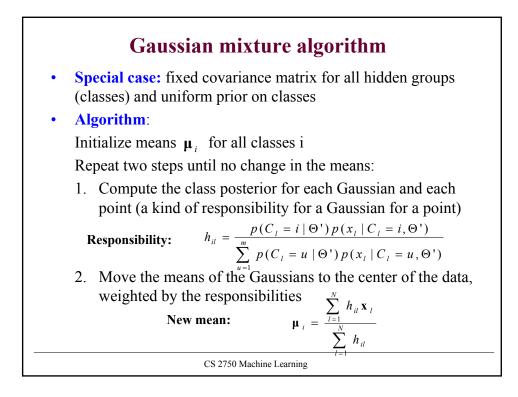
Generative classifier model

• Generative classifier model with Gaussian densitities

• Assume the class labels are known. The ML estimate is

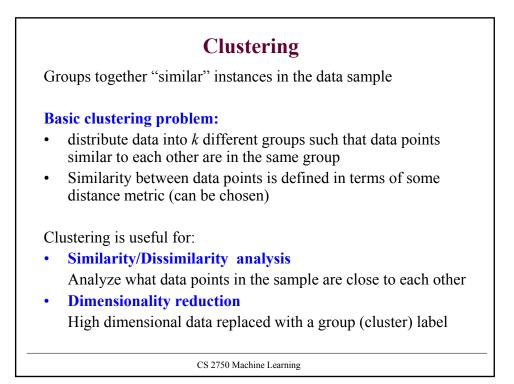


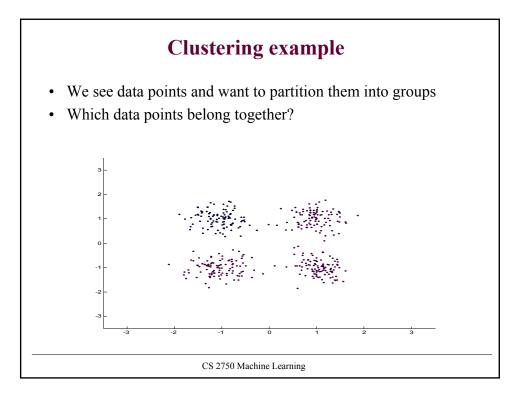


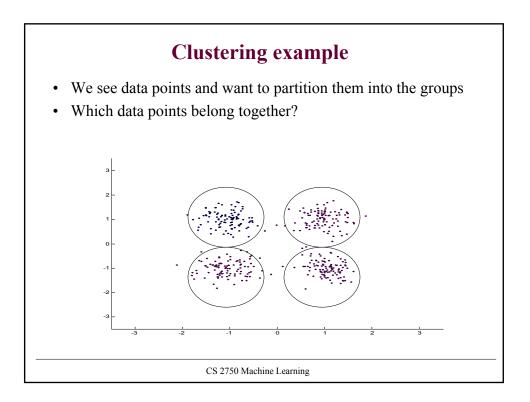


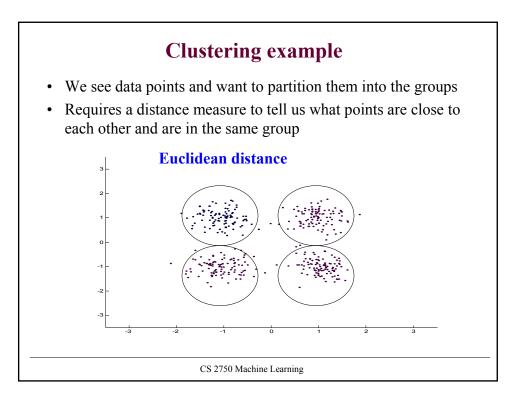
K-means approximation to EM Expectation-Maximization: () posterior measures the responsibility of a Gaussian for every point $h_{u} = \frac{p(C_{i} = i | \Theta') p(x_{i} | C_{i} = i, \Theta')}{\sum_{u=1}^{m} p(C_{i} = u | \Theta') p(x_{i} | C_{i} = u, \Theta')}$ **K- Means** () Only the closest Gaussian is made responsible for a point $h_{u} = 1 \quad \text{If i is the closest Gaussian}$ $h_{u} = 0 \quad \text{Otherwise}$ **Re-estimation of means** $\mu_{i} = \frac{\sum_{i=1}^{N} h_{i} \mathbf{x}_{i}}{\sum_{i=1}^{N} h_{u}}$ () Results in moving the means of Gaussians to the center of the data points it covered in the previous step

K-means algorithm K-Means algorithm Initialize k values of means (centers) Repeat two steps until no change in the means: Partition the data according to the current means (using the similarity measure) Move the means to the center of the data in the current partition Used frequently for clustering data









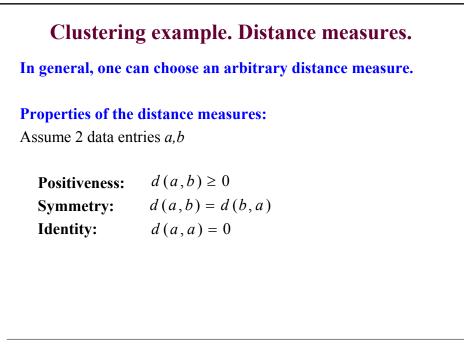
A set of pa We want to			n into the group	os based on similarit
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

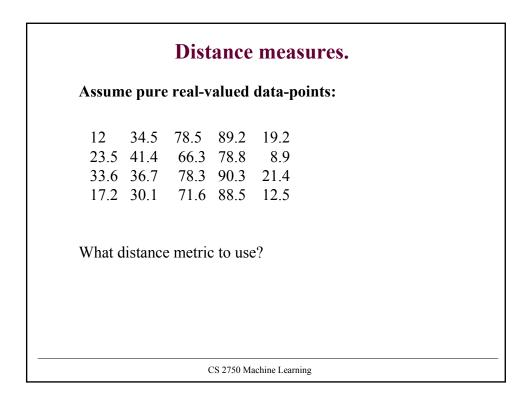
Clustering example

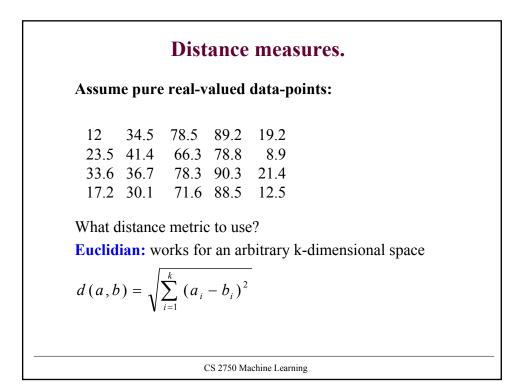
- A set of patient cases
- We want to partition them into the groups based on similarities

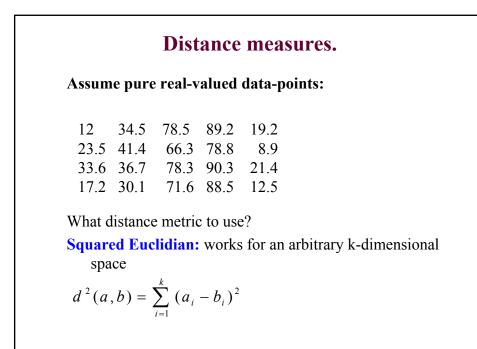
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

How to design the distance metric to quantify similarities?





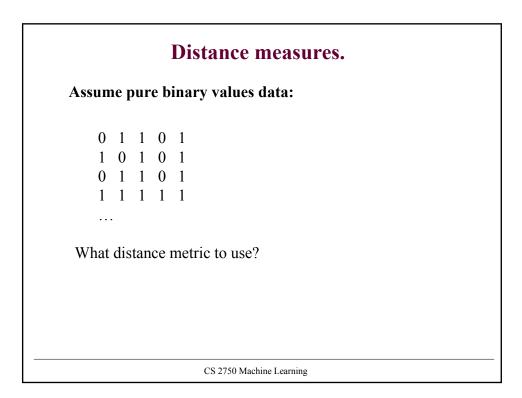


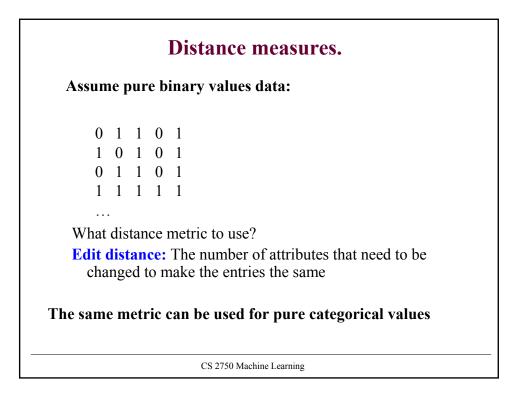


CS 2750 Machine Learning

Distance measures. Assume pure real-valued data-points: 12 34.5 78.5 89.2 19.2 66.3 78.8 23.5 41.4 8.9 33.6 36.7 78.3 90.3 21.4 17.2 30.1 71.6 88.5 12.5 Assume that two variables are highly correlated kdimensional space $d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$ Etc. ..

Distance measures. Generalized distance metric: d²(a, b) = (a - b) Γ⁻¹(a - b)^T Γ⁻¹ is a matrix that weights attributes proportionally to their importance. Different weights lead to a different distance metric. If Γ = I we get squared Euclidean Γ=Σ Mahalanobis distance takes into account correlations among attributes





Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

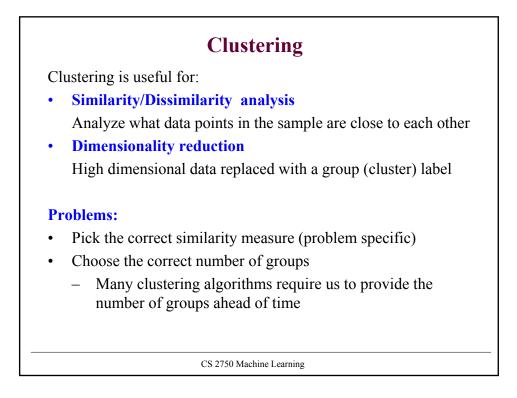
Distance measures.

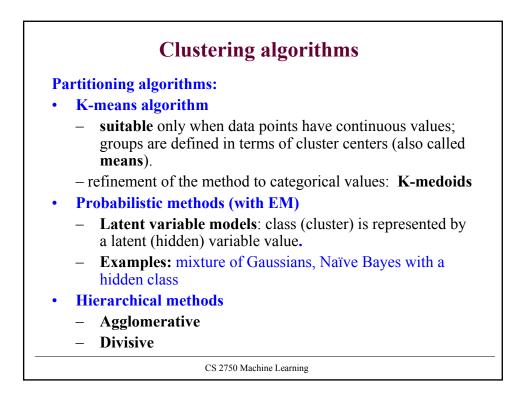
Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

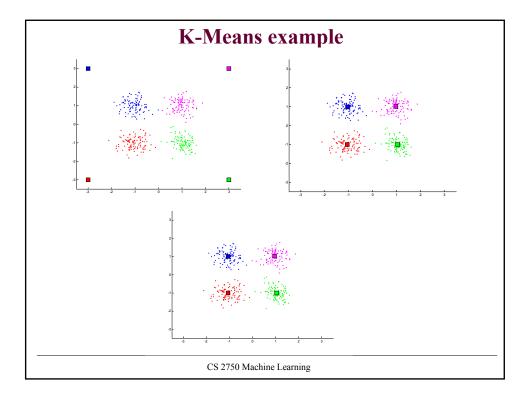
What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and Edit distances for subsets of attributes



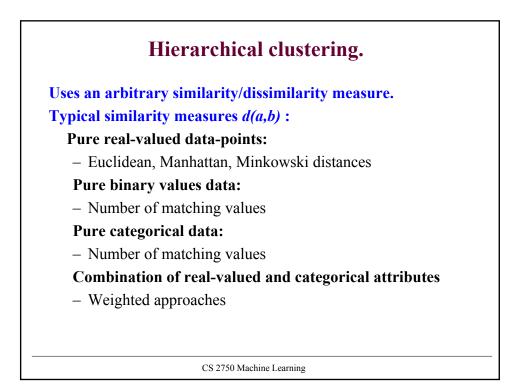


	K-means
K-	Means algorithm:
	Initialize randomly k values of means (centers)
	Repeat two steps until no change in the means:
	 Partition the data according to the current set of means (using the similarity measure)
	 Move the means to the center of the data in the current partition
	Stop when no change in the means
Pro	operties:
•	Minimizes the sum of squared center-point distances for all clusters
•	The algorithm always converges (local optima).
	CS 2750 Machine Learning



K-means algorithm
Properties:
 – converges to centers minimizing the sum of squared center- point distances (still local optima)
 The result is sensitive to the initial means' values
Advantages:
– Simplicity
- Generality - can work for more than one distance measure
Drawbacks:
 Can perform poorly with overlapping regions
 Lack of robustness to outliers
 Good for attributes (features) with continuous values
Allows us to compute cluster means
 k-medoid algorithm used for discrete data
CS 2750 Machine Learning

Probabilistic (EM-based) algorithms Latent variable models • Examples: Naïve Bayes with hidden class **Mixture of Gaussians** • Partitioning: - the data point belongs to the class with the highest posterior • Advantages: - Good performance on overlapping regions - Robustness to outliers Data attributes can have different types of values Drawbacks: - EM is computationally expensive and can take time to converge Density model should be given in advance CS 2750 Machine Learning



Hierarchical clustering.

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

