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Learning probability distribution

Basic learning settings:

* A setof random variables X={X,X,,..., X}

* A model of the distribution over variables in X
with parameters ©

e Data DZ{DI,Dz,..,DN}

Objective: find parameters @ that describe the data

Variables can be:
— Hidden

— Values can be missing
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Hidden variables

Modeling assumption:

Variables X={X,,X,,...,X,} are related through hidden
variables

Why to add hidden variables?
* More flexibility in describing the distribution P(X)
* Smaller parameterization of P(X)

— New independences can be introduced via hidden

variables
Example: Hidden class variable
» Latent variable models ¢
— hidden classes (categories) P(X|C =1i)
X
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Missing values

A set of random variables X={X,X,,....,X,}
e Data D={D,D,,.,D,}
* But some values are missing

D, =(x,x},...x})

Missing value of X,

D, = (x},...x!)

Missing values of  x;,x,

Etc.

* Example: medical records
« We still want to estimate parameters of P(X)
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General EM

The key idea of a method:

Compute the parameter estimates iteratively by performing the
following two steps:

Two steps of the EM:

1. Expectation step. Complete all hidden and missing variables
with expectations for the current set of parameters @'

2. Maximization step. Compute the new estimates of @ for
the completed data

Stop when no improvement possible
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EM algorithm

Algorithm (general formulation)
Initialize parameters ®
Repeat
Set O'=0
1. Expectation step
0(©|0")=Ey) e log P(H,D|0,5)
2. Maximization step
® =arg max Q(0O |O")

until no or small im%rovement n® (6=0"

Questions: Why this leads to the ML estimate ?
What is the advantage of the algorithm?
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EM advantages

Key advantages:
* For Bayesian belief networks
0©[0")=Eypelog P(H,D]0,0)
— Q decomposes along variables (has a nice form)
logP(H,D|0©,&) = 1ogﬂP(H<’>,D<’> |©,&) = logﬁﬁaﬂ, 0

=1 1=l i=1

0(6,0'") = iZP(H @ D”),®')zn: log 6, (1)

I=1 {H}
n

- EN: > > P, D", 0log 0, (1)
=1

=l =l {H;=X,upa(X,)}
— The maximization of Q can be carried in the closed form
* No need to compute Q before maximizing

» We directly optimize using quantities corresponding to
expected counts
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Naive Bayes with a hidden class and
missing values

Assume:

« P(X) is modeled using a Naive Bayes model with hidden class
variable

* Missing entries (values) for attributes in the dataset D

Hidden class variable

(X € Attributes are independent
/g \\ given the class
O
X, X, ... X,
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EM for the Naive Bayes

* We can use EM to learn the parameters
0(0|0") = E,, o log P(H,D|0.£)

* Parameters:

7 ; prior on class j

0, probability of an attribute i having value k given class j
* Indicator variables:

o jl for example /, the class is j ; if true (=1) else false (=0)

5l.jkl for example /, the class is j and the value of attrib 7 is &

because the class is hidden and some attributes are missing, the
values (0,1) of indicator variables are not known; they are
hidden

H — a collection of all indicator variables
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EM for the Naive Bayes model

* We can use EM to do the learning of parameters
0©[0")=Eypelog P(H,D|0,5)

N 1 1
log P(H,D|0,&) =log[ 1T~ TTI16."
=1 ik
N
= 22(5; log 7z, +ZZk:5i/[’k logd,,)

=1 i

N
EH\D,@' logP(H,D|0,8)= ZZ(EH\D,G)' (511) logm ;T ZZEH\D,G' (é‘zjk) logeijk)
(=0, ik

Eypo ()= p(C, = j| D,,0") Substitutes 0,1
Eype (é‘lj N=pX,=k,C,=j|D,,0) with expected value
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EM for Naive Bayes model

» Computing derivatives of @ for parameters and setting it to 0

we get: e 9 - N i
== ke n
N Ny

k=1

p(C,=j|D,0"

=

M=

ﬁj = Z EH\D,@‘(5;) =

=1

~
1]

1
N

- N
]vijk = Z EH\D,@'(5ék) = p(Xil =k, Cz =jl D[,@)')
=1

I=1
* Important:
— Use expected counts instead of counts !!!
— Re-estimate the parameters using expected counts
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EM for BBNs

* The same result applies to learning of parameters of any
Bayesian belief network with discrete-valued variables

00[0")=E, ) o log P(H,D[0,5)

ijk ...
O = ; «—— Parameter value maximizing Q
2Ny
k=1
~ S ! !
— — _ 7 i [
N i —Zp(xi =k,pa; = j|D",0")
I=1
. may require inference
* Again:

— Use expected counts instead of counts
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Gaussian mixture model

Probability of occurrence of a data example x

i1s modeled aks P(C)
p(x) = ZP(C =)px|C=1i) C
where i pX|C=i)
C=i
p(C=1i) X

= probability of a data point coming
from class C=i
p(x|C=i)~N(u,,X))
= class conditional density (modeled as a Gaussian)

for class i
Remember: C is hidden !!!!
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Generative Naive Bayes classifier model

* Generative classifier model based on the Naive Bayes
» Assume the class labels are known. The ML estimate is

N,=>1

s class C
~ N,
7, =—L
N Cc=1 C=2
NI,
l N, J:Cy=i ’
n,X, n,,x,
~ 1
Ei = (X‘_u[)(x‘_u[)T
N;‘ JiCy=i ’ ’
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Gaussian mixture model

* In the Gaussian mixture Gaussians are not labeled
* We can apply EM algorithm:
— re-estimation based on the class posterior

hil :p(C[ :i|X[’®|): mp(C[ :l|® )p(x[ |Cl :l)@)

2. p(Cr=u|®)p(x,|C,=u,0)

u=1

N.=> h
i Zl 11\

~ N,

l

Count replaced with the expected count

"N
~ 1
n = F,Zz: X

~ 1
2‘1‘ = FZ hil(xj —lli)(X,- —lli)T
i 1
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Gaussian mixture algorithm

* Special case: fixed covariance matrix for all hidden groups
(classes) and uniform prior on classes

* Algorithm:
Initialize means p, for all classes i
Repeat two steps until no change in the means:

1. Compute the class posterior for each Gaussian and each
point (a kind of responsibility for a Gaussian for a point)
p(C, =i|®Yp(x,|C,=i,0")
2. p(C,=ul®)p(x,|C,=u,0")

2. Move the means of the Gaussians to the center of the data,
weighted by the responsibilities X
g y p Z h[[ X,
_ =l

Responsibility: hy =

New mean: ",
1
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Gaussian mixture model - example
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Gaussian mixture example
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Gaussian mixture model. Gradient ascent.

* A set of parameters

r(C)
O = {70, Ty T, sl ML, | c
Assume unit variance terms and fixed priors
P(x|C=i)= (7)™ exp{—%llx—uillz} el
X

P(D|©)= HZﬂ' 27)™"? exp{——”x, U, || }

=1 i=1

[(®)= Z log Z 7rl.(27r)‘”2 exp{—%”x, - ,ul.HZ}

a(©)

Z hy (x, = p;) - easy on-line update
a/’ll =1
CS 2750 Machine Learning

EM versus gradient ascent

Gradient ascent EM N
Z hyx,

ul [ =1

ﬂ[<_ﬂ[+azhil(x/_ﬂ[) u <

2
>,

Learning rate

Small pull towards distant
uncovered data

Renormalized — big jump in the
first step
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K-means approximation to EM

Expectation-Maximization:
* posterior measures the responsibility of a Gaussian for every point
h, - mp(C/ =i|®)p(x, |C, =i,0"
2 p(Cr=ul®)p(x,|C, =u,0")
K- Means u=1
* Only the closest Gaussian is made responsible for a point

h, =1 Ifiis the closest Gaussian
h; =0  Otherwise
Re-estimation of means D ohyx,

* Results in moving the means of Gaussians to the center of the
data points it covered in the previous step
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K-means algorithm

Useful for clustering data:
* Assume we want to distribute data into k different groups

— Similarity between data points is measured in terms of the
distance

— Groups are defined in terms of centers (also called means)

K-Means algorithm:
Initialize k values of means (centers)
Repeat two steps until no change in the means:

— Partition the data according to the current means (using
the similarity measure)

— Move the means to the center of the data in the current
partition
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K-means algorithm

* Properties

— converges to centers minimizing the sum of center-point
distances (local optima)

— The result may be sensitive to the initial means’ values

* Advantages:
— Simplicity
— Generality — can work for an arbitrary distance measure

* Drawbacks:
— Can perform poorly on overlapping regions
— Lack of robustness to outliers (outliers are not covered)
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