CS 2750 Machine Learning
Lecture 20

Learning with hidden variables
and missing values.
Expectation maximization (EM)

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

CS 2750 Machine Learning

Learning probability distribution

Basic learning settings:
* A setof random variables X={X,X,,..., X}
* A model of the distribution over variables in X

with parameters ©
« Data D={D,D,,.,D,}

st D =(x],x5,...x))

Objective: find parameters © that describe the data
Assumptions considered so far:

— Known parameterizations

— No hidden variables

— No-missing values
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Hidden variables

Modeling assumption:

Variables X={X,,X,,...,X,} are related through hidden
variables

Why to add hidden variables?
* More flexibility in describing the distribution P(X)
* Smaller parameterization of P(X)

— New independences can be introduced via hidden

variables
Example: Hidden class variable
» Latent variable models ¢
— hidden classes (categories) P(X|C =1i)
X
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Hidden variable model. Example.

» We want to represent the probability model of a population
in a two dimensional space X ={X,,X,}

Observed data
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Hidden variable model

* We want to represent the probability model of a population
in a two dimensional space X ={X,,X,}

Observed data
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Hidden variable model

» We want to represent a model of a population in a two
dimensional space X={X,,X,}

Observed data
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Hidden variable model

* We want to represent the probability model of a population
in a two dimensional space X ={X,,X,}

Observed data Model : 3 Gaussians with
) a hidden class variable
: | P©)
E C
s P(X|C =)
0.5 X
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Mixture of Gaussians
Probability of the occurrence of a data point x
1s modeled as P(C)
k
p(x)=) p(C=ip(x|C =i @®cC
i=1
where p(X|C=i)
p(C =1i)
O x

= probability of a data point coming
from class C=i
p(x|C=i)=N@p,XZ,)
= class-conditional density (modeled as Gaussian)
for class 1

CS 2750 Machine Learning




Mixture of Gaussians

 Density function for the Mixture of Gaussians model
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Naive Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of
parameters defining P(X)

Example:
» Naive Bayes model with a hidden class variable

Hidden class variable

\ ¢ Attributes are independent

given the class

O

X, X, .. X

n

* Useful in customer profiles
— Class value = type of customers
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Missing values

A set of random variables X={X,X,,....X,}
e Data D={D,D,,.,D,}
* But some values are missing

D, =(x],x5,...x})

Missing value of X,

D,y =(xhh..ox})

Missing values of X, X,

Etc.

* Example: medical records
« We still want to estimate parameters of P(X)
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Density estimation

~

Goal: Find the set of parameters @
Estimation criteria:
— ML max p(D|0,¢)
—Bayesian P(©|D,¢)
Optimization methods for ML: gradient-ascent, conjugate
gradient, Newton-Rhapson, etc.

* Problem: No or very small advantage from the structure of the
corresponding belief network

Expectation-maximization (EM) method
— An alternative optimization method
— Suitable when there are missing or hidden values
— Takes advantage of the structure of the belief network
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General EM

The key idea of a method:

Compute the parameter estimates iteratively by performing the

following two steps:
Two steps of the EM:

1. Expectation step. Complete all hidden and missing variables
with expectations for the current set of parameters @'

2. Maximization step. Compute the new estimates of @ for
the completed data

Stop when no improvement possible
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EM

Let H—be a set of all variables with hidden or missing values
Derivation

P(H,D|0©,5)=P(H|D,0,5)P(D]0,$)
log P(H,D|0®,{)=1log P(H |D,0,{)+1log P(D|0,¢)
log P(D|0®,¢)=1log P(H,D|®,)—1log P(H | D,0,¢)

og-likelihood of data
B~ Log-likelihood of d
Average both sides with P(H | D,0',§) for @'

EH\D,@' log P(D|0O,¢) = EH|D,®' log P(H,D|0,8)— EH\D,@' log P(H | ©,¢)

log P(D[0,5)=0(0|0")+H(©|06")

Log-likelihood of data
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EM algorithm

Algorithm (general formulation)
Initialize parameters ©®
Repeat
Set O'=0
1. Expectation step
0©]0")=Ey), o log P(H,D|0,5)
2. Maximization step
® =arg max Q(O |O")

until no or small im%rovement in® (0=0")

Questions: Why this leads to the ML estimate ?
What is the advantage of the algorithm?
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EM algorithm

* Why is the EM algorithm correct?

¢ Claim: maximizing Q improves the log-likelihood
[(©)=0(0[06')+H(®|06")

Difference in log-likelihoods (current and next step)

[(©)-1(0")=0(0]0")-0(0'6")+H(®|0")-H(0'6")

Subexpression H(® |0')-H(O®'1©')>0
Kullback-Leibler (KL) divergence (distance between 2 distributions)
KL(P|R)=>_ P log R—" >0 Isalways positive !!

H(©]©') = ~E,pelog P(H|©,8) ==Y p(H|D,0")log P(H |©,&)
P 0,8)
H©|0)-H(@®[0)=Y P(H |D,0)log ~12:5) 5
(0]0")-H(©®'0") zl_ (H | )OgP(H|®,§)
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EM algorithm

Difference in log-likelihoods
[(©)-1(0')=0(0]0")-0(0'6")+H(®|0")-H(0'06")
[(©)-1(0")20(0|6")-0(6'0")
Thus
by maximizing Q we maximize the log-likelihood
[(©)=0(0]0")+H(O]0)
EM is a first-order optimization procedure

* Climbs the gradient
* Automatic learning rate

No need to adjust the learning rate !!!!
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EM advantages
Key advantages:

+ For Bayesian belief networks
0B[0)=E,),qlogP(H,D]0,5)
— Q decomposes along variables (has a nice form)
log P(H.D[6.£)=log] | P(H". D" |0.) = og ] [ T0,(1)

=1 =1 i=1

00.0)=33 P(H" D",0)3 logh, (1)

I=1 {H}
n

=2N: > > pH," DY, 0log 0, (1)
=1

= i=l {H;=X;Upa(X;)}
— The maximization of Q can be carried in the closed form
* No need to compute Q before maximizing

» We directly optimize using quantities corresponding to
expected counts
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EM for BBNs

* The same result applies to learning of parameters of any
Bayesian belief network with discrete-valued variables

0(@[0")=E, e log P(H,D[0,5)

~

ijk L
Oy = ~— «— Parameter value maximizing Q

14

2 N

k=1

Ny=Y p/=k.pa/=j|D". 0

N
I=1

may require inference

* Again:
— Use expected counts instead of counts
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