CS 2750 Machine Learning Lecture 20

Learning with hidden variables and missing values. Expectation maximization (EM)

Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

Learning probability distribution

Basic learning settings:

- A set of random variables $\mathbf{X} = \{X_1, X_2, ..., X_n\}$
- A model of the distribution over variables in X with parameters Θ
- Data $D = \{D_1, D_2, ..., D_N\}$ s.t. $D_i = (x_1^i, x_2^i, ..., x_n^i)$

Objective: find parameters $\hat{\Theta}$ that describe the data

Assumptions considered so far:

- Known parameterizations
- No hidden variables
- No-missing values

Hidden variables

Modeling assumption:

Variables $\mathbf{X} = \{X_1, X_2, ..., X_n\}$ are related through hidden variables

Why to add hidden variables?

- More flexibility in describing the distribution P(X)
- Smaller parameterization of P(X)
 - New independences can be introduced via hidden variables

Example:

- Latent variable models
 - hidden classes (categories)

Hidden class variable

CS 2750 Machine Learning

Hidden variable model. Example.

• We want to represent the probability model of a population in a two dimensional space $\mathbf{X} = \{X_1, X_2\}$

Observed data

Hidden variable model

• We want to represent the probability model of a population in a two dimensional space $\mathbf{X} = \{X_1, X_2\}$

Observed data

CS 2750 Machine Learning

Hidden variable model

• We want to represent a model of a population in a two dimensional space $\mathbf{X} = \{X_1, X_2\}$

Observed data

Hidden variable model

• We want to represent the probability model of a population in a two dimensional space $\mathbf{X} = \{X_1, X_2\}$

Observed data

Model: 3 Gaussians with a hidden class variable

CS 2750 Machine Learning

Mixture of Gaussians

Probability of the occurrence of a data point x is modeled as

$$p(\mathbf{x}) = \sum_{i=1}^{k} p(C=i) p(\mathbf{x} \mid C=i)$$

where

$$p(C = i)$$

= probability of a data point coming from class C=i

$$p(\mathbf{x} \mid C = i) \approx N(\mathbf{\mu}_i, \mathbf{\Sigma}_i)$$

= class-conditional density (modeled as Gaussian) for class i

Mixture of Gaussians

• Density function for the Mixture of Gaussians model

CS 2750 Machine Learning

Naïve Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of parameters defining P(X)

Example:

• Naïve Bayes model with a hidden class variable

Hidden class variable

Attributes are independent given the class

- Useful in customer profiles
 - Class value = type of customers

Missing values

A set of random variables $\mathbf{X} = \{X_1, X_2, ..., X_n\}$

- **Data** $D = \{D_1, D_2, ..., D_N\}$
- But some values are missing

$$D_i = (x_1^i, x_3^i, \dots x_n^i)$$

Missing value of x_2^i

$$D_{i+1} = (x_3^i, \dots x_n^i)$$

Missing values of x_1^i, x_2^i

Etc.

- Example: medical records
- We still want to estimate parameters of P(X)

CS 2750 Machine Learning

Density estimation

Goal: Find the set of parameters $\hat{\Theta}$

Estimation criteria:

- ML max $p(D \mid \mathbf{\Theta}, \xi)$
- Bayesian $p(\mathbf{\Theta} \mid D, \xi)$

Optimization methods for ML: gradient-ascent, conjugate gradient, Newton-Rhapson, etc.

• **Problem:** No or very small advantage from the structure of the corresponding belief network

Expectation-maximization (EM) method

- An alternative optimization method
- Suitable when there are missing or hidden values
- Takes advantage of the structure of the belief network

General EM

The key idea of a method:

Compute the parameter estimates iteratively by performing the following two steps:

Two steps of the EM:

- 1. Expectation step. Complete all hidden and missing variables with expectations for the current set of parameters Θ'
- **2.** Maximization step. Compute the new estimates of Θ for the completed data

Stop when no improvement possible

CS 2750 Machine Learning

EM

Let H – be a set of all variables with hidden or missing values **Derivation**

$$P(H,D \mid \Theta,\xi) = P(H \mid D,\Theta,\xi)P(D \mid \Theta,\xi)$$

$$\log P(H, D \mid \Theta, \xi) = \log P(H \mid D, \Theta, \xi) + \log P(D \mid \Theta, \xi)$$

$$\log P(D \mid \Theta, \xi) = \log P(H, D \mid \Theta, \xi) - \log P(H \mid D, \Theta, \xi)$$

Average both sides with $P(H | D, \Theta', \xi)$ for Θ'

$$E_{H\mid D,\Theta'}\log P(D\mid \Theta,\xi) = E_{H\mid D,\Theta'}\log P(H,D\mid \Theta,\xi) - E_{H\mid D,\Theta'}\log P(H\mid \Theta,\xi)$$

$$\underline{\log P(D \mid \Theta, \xi)} = Q(\Theta \mid \Theta') + H(\Theta \mid \Theta')$$

Log-likelihood of data

EM algorithm

Algorithm (general formulation)

Initialize parameters Θ

Repeat

Set
$$\Theta' = \Theta$$

1. Expectation step

$$Q(\Theta \mid \Theta') = E_{H \mid D \mid \Theta'} \log P(H, D \mid \Theta, \xi)$$

Maximization step

$$\Theta = \arg \max Q(\Theta \mid \Theta')$$

until no or small improvement in Θ ($\Theta = \Theta'$)

Questions: Why this leads to the ML estimate?

What is the advantage of the algorithm?

CS 2750 Machine Learning

EM algorithm

- Why is the EM algorithm correct?
- Claim: maximizing Q improves the log-likelihood

$$l(\Theta) = Q(\Theta \mid \Theta') + H(\Theta \mid \Theta')$$

Difference in log-likelihoods (current and next step)

$$l(\Theta) - l(\Theta') = Q(\Theta \mid \Theta') - Q(\Theta' \mid \Theta') + H(\Theta \mid \Theta') - H(\Theta' \mid \Theta')$$

Subexpression $H(\Theta | \Theta') - H(\Theta' | \Theta') \ge 0$

Kullback-Leibler (KL) divergence (distance between 2 distributions)

Kullback-Leibler (KL) divergence (distance between 2 distribut
$$KL(P \mid R) = \sum_{i} P_{i} \log \frac{P_{i}}{R_{i}} \ge 0$$
 Is always positive !!!
$$H(\Theta \mid \Theta') = -E_{H \mid D, \Theta'} \log P(H \mid \Theta, \xi) = -\sum_{\{H\}} p(H \mid D, \Theta') \log P(H \mid \Theta, \xi)$$
$$H(\Theta \mid \Theta') - H(\Theta' \mid \Theta') = \sum_{i} P(H \mid D, \Theta') \log \frac{P(H \mid \Theta', \xi)}{P(H \mid \Theta, \xi)} \ge 0$$

$$H(\Theta \mid \Theta') = -E_{H\mid D,\Theta'} \log P(H \mid \Theta, \xi) = -\sum_{H\mid D} p(H \mid D, \Theta') \log P(H \mid \Theta, \xi)$$

$$H(\Theta \mid \Theta') - H(\Theta' \mid \Theta') = \sum_{i} P(H \mid D, \Theta') \log \frac{P(H \mid \Theta', \xi)}{P(H \mid \Theta, \xi)} \ge 0$$

EM algorithm

Difference in log-likelihoods

$$l(\Theta) - l(\Theta') = Q(\Theta \mid \Theta') - Q(\Theta' \mid \Theta') + H(\Theta \mid \Theta') - H(\Theta' \mid \Theta')$$

$$l(\Theta) - l(\Theta') \ge Q(\Theta \mid \Theta') - Q(\Theta' \mid \Theta')$$

Thus

by maximizing Q we maximize the log-likelihood

$$l(\Theta) = Q(\Theta \mid \Theta') + H(\Theta \mid \Theta')$$

EM is a first-order optimization procedure

- Climbs the gradient
- Automatic learning rate

No need to adjust the learning rate !!!!

CS 2750 Machine Learning

EM advantages

Key advantages:

• For Bayesian belief networks

$$Q(\Theta \mid \Theta') = E_{H \mid D,\Theta'} \log P(H,D \mid \Theta,\xi)$$

- Q decomposes along variables (has a nice form)

$$\log P(H, D | \Theta, \xi) = \log \prod_{l=1}^{N} P(H^{(l)}, D^{(l)} | \Theta, \xi) = \log \prod_{l=1}^{N} \prod_{i=1}^{n} \theta_{ijk}(l)$$

$$Q(\Theta, \Theta') = \sum_{l=1}^{N} \sum_{i|H} P(H^{(l)} | D^{(l)}, \Theta') \sum_{i=1}^{n} \log \theta_{ijk}(l)$$

$$= \sum_{l=1}^{N} \sum_{i=1}^{n} \sum_{\{H_{i} = X_{i} \cup pa(X_{i})\}} P(H_{i}^{(l)} | D^{(l)}, \Theta') \log \theta_{ijk}(l)$$

- The maximization of \mathbf{Q} can be carried in the closed form
 - No need to compute Q before maximizing
 - We directly optimize using quantities corresponding to expected counts

EM for BBNs

• The same result applies to learning of parameters of any Bayesian belief network with discrete-valued variables

$$Q(\Theta \mid \Theta') = E_{H \mid D \mid \Theta'} \log P(H, D \mid \Theta, \xi)$$

$$\theta_{ijk} = \frac{\widetilde{N}_{ijk}}{\sum_{k=1}^{r_i} \widetilde{N}_{ijk}}$$
 ---- Parameter value maximizing \boldsymbol{Q}

$$\widetilde{N}_{ijk} = \sum_{l=1}^{N} p(x_i^l = k, pa_i^l = j \mid D^l, \Theta')$$

may require inference

- Again:
 - Use expected counts instead of counts