CS 2750 Machine Learning Lecture 2

Machine Learning

Milos Hauskrecht

milos@cs.pitt.edu 5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

CS 2750 Machine Learning

Administration

Instructor:

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square, x4-8845

TA:

Chenhai Xi

chenhai@cs.pitt.edu

5503 Sennott Square,

Office hours: TBA

Learning

- Assume we see examples of pairs (\mathbf{x}, y) and we want to learn the mapping $f: X \to Y$ to predict future ys for values of \mathbf{x}
- We get the data what should we do?

CS 2750 Machine Learning

Learning bias

- **Problem:** many possible functions $f: X \to Y$ exists for representing the mapping between \mathbf{x} and \mathbf{y}
- Which one to choose? Many examples still unseen!

Learning bias

- Problem is easier when we make an assumption about the model, say, f(x) = ax + b
- Restriction to a linear model is an example of learning bias

Learning bias

- **Bias** provides the learner with some basis for choosing among possible representations of the function.
- Forms of bias: constraints, restrictions, model preferences
- Important: There is no learning without a bias!

Learning bias

- Choosing a parametric model or a set of models is not enough Still too many functions f(x) = ax + b
 - One for every pair of parameters a, b

CS 2750 Machine Learning

Fitting the data to the model

We are interested in finding the **best set** of model parameters

- Objective: Find the set of parameters that:
 - reduces the misfit between the model and observed data
 - Or, (in other words) that explain the data the best
- Error function:
 - Measures of misfit between the data and the model
- Examples of error functions:
 - Average squared error $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$
 - Average misclassification error $\frac{1}{n} \sum_{i=1}^{n} 1_{y_i \neq f(x_i)}$

Average # of misclassified cases

Fitting the data to the model

- Linear regression
 - Least squares fit with the linear model
 - minimizes $\frac{1}{n} \sum_{i=1}^{n} (y_i f(x_i))^2$

CS 2750 Machine Learning

Typical learning

Three basic steps:

• Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

• Select the error function to be optimized

E.g.
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error represent the best fit of the model to the data

But there are problems one must be careful about ...

Learning

Problem

- We fit the model based on past experience (past examples seen)
- But ultimately we are interested in learning the mapping that performs well on the whole population of examples

Training data: Data used to fit the parameters of the model

Training error:
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

True (generalization) error (over the whole unknown population):

$$E_{(x,y)}[(y-f(x))^2]$$
 Mean squared error

Training error tries to approximate the true error !!!!

Does a good training error imply a good generalization error?

CS 2750 Machine Learning

Overfitting

• Assume we have a set of 10 points and we consider polynomial functions as our possible models

Overfitting

- Fitting a linear function with the square error
- Error is nonzero

CS 2750 Machine Learning

Overfitting

- Linear vs. cubic polynomial
- Higher order polynomial leads to a better fit, smaller error

Overfitting

• Is it always good to minimize the error of the observed data?

CS 2750 Machine Learning

Overfitting

- For 10 data points, the degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error?

Overfitting

- For 10 data points, degree 9 polynomial gives a perfect fit (Lagrange interpolation). Error is zero.
- Is it always good to minimize the training error? NO!!
- More important: How do we perform on the unseen data?

Overfitting

Situation when the training error is low and the generalization error is high. Causes of the overfitting phenomenon:

- Model with a large number of parameters (degrees of freedom)
- Small data size (as compared to the complexity of the model)

How to evaluate the learner's performance?

• Generalization error is the true error for the population of examples we would like to optimize

$$E_{(x,y)}[(y-f(x))^2]$$

- But it cannot be computed exactly
- Sample mean only approximates the true mean
- Optimizing the training error can lead to the overfit, i.e. training error may not reflect properly the generalization error

$$\frac{1}{n} \sum_{i=1...n} (y_i - f(x_i))^2$$

• So how to test the generalization error?

CS 2750 Machine Learning

How to evaluate the learner's performance?

• **Generalization error** is the true error for the population of examples we would like to optimize

$$E_{(x,y)}[(y-f(x))^2]$$

- · Sample mean only approximates it
- Two ways to estimate generalization error:
 - Theoretical: Law of Large numbers
 - statistical bounds on the difference between true and sample mean errors
 - Practical: Use a separate data set with m data samples to test
 - Test error $\frac{1}{m} \sum_{j=1,...m} (y_j f(x_j))^2$

Basic experimental setup to test the learner's performance

- 1. Take a dataset D and divide it into:
 - Training data set
 - Testing data set
- 2. Use the training set and your favorite ML algorithm to train the learner
- 3. Test (evaluate) the learner on the testing data set
- The results on the testing set can be used to compare different learners powered with different models and learning algorithms

CS 2750 Machine Learning

Design of a learning system (first view)

Design of a learning system.

- **1. Data:** $D = \{d_1, d_2, ..., d_n\}$
- 2. Model selection:
- Select a model or a set of models (with parameters)

E.g.
$$y = ax + b$$

• Select the error function to be optimized

E.g.
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - f(x_i))^2$$

- 3. Learning:
- Find the set of parameters optimizing the error function
 - The model and parameters with the smallest error
- 4. Application:
- Apply the learned model
 - E.g. predict ys for new inputs x using learned $f(\mathbf{x})$

Data

Data may need a lot of:

- Cleaning
- Preprocessing (conversions)

Cleaning:

- Get rid of errors, noise,
- Removal of redundancies

Preprocessing:

- Renaming
- Rescaling (normalization)
- Discretizations
- Abstraction
- Aggregation
- New attributes

Data preprocessing

- Renaming (relabeling) categorical values to numbers
 - dangerous in conjunction with some learning methods
 - numbers will impose an order that is not warrantied

High \rightarrow 2 True \rightarrow 2 Normal \rightarrow 1 False \rightarrow 1 Low \rightarrow 0 Unknown \rightarrow 0

- **Rescaling (normalization):** continuous values transformed to some range, typically [-1, 1] or [0,1].
- **Discretizations (binning):** continuous values to a finite set of discrete values

CS 2750 Machine Learning

Data preprocessing

- Abstraction: merge together categorical values
- **Aggregation:** summary or aggregation operations, such minimum value, maximum value, average etc.
- New attributes:
 - example: obesity-factor = weight/height

Data biases

- Watch out for data biases:
 - Try to understand the data source
 - It is very easy to derive "unexpected" results when data used for analysis and learning are biased (pre-selected)
- Results (conclusions) derived for pre-selected data do not hold in general !!!

CS 2750 Machine Learning

Data biases

Example 1: Risks in pregnancy study

- Sponsored by DARPA at military hospitals
- Study of a large sample of pregnant woman who visited military hospitals
- Conclusion: the factor with the largest impact on reducing risks during pregnancy (statistically significant) is a pregnant woman being single
- Single woman \rightarrow the smallest risk
- What is wrong?

Data

Example 2: Stock market trading (example by Andrew Lo)

- Data on stock performances of companies traded on stock market over past 25 year
- Investment goal: pick a stock to hold long term
- Proposed strategy: invest in a company stock with an IPO corresponding to a Carmichael number
- Evaluation result: excellent return over 25 years
- Where the magic comes from?

Feature selection

• The size (dimensionality) of a sample can be enormous

$$x_i = (x_i^1, x_i^2, ..., x_i^d)$$
 d - very large

- Example: document classification
 - 10,000 different words
 - Inputs: counts of occurrences of different words
 - Too many parameters to learn (not enough samples to justify the estimates the parameters of the model)
- Dimensionality reduction: replace inputs with features
 - Extract relevant inputs (e.g. mutual information measure)
 - PCA principal component analysis
 - Group (cluster) similar words (uses a similarity measure)
 - Replace with the group label

Model selection

- What is the right model to learn?
 - A prior knowledge helps a lot, but still a lot of guessing
 - Initial data analysis and visualization
 - We can make a good guess about the form of the distribution, shape of the function
 - Independences and correlations
- · Overfitting problem
 - Take into account the **bias and variance** of error estimates
 - Simpler (more biased) model parameters can be estimated more reliably (smaller variance of estimates)
 - Complex model with many parameters parameter estimates are less reliable (large variance of the estimate)

CS 2750 Machine Learning

Solutions for overfitting

How to make the learner avoid the overfit?

- Assure sufficient number of samples in the training set
 - May not be possible (small number of examples)
- Hold some data out of the training set = validation set
 - Train (fit) on the training set (w/o data held out);
 - Check for the generalization error on the validation set, choose the model based on the validation set error (random resampling validation techniques)
- Regularization (Occam's Razor)
 - Penalize for the model complexity (number of parameters)
 - Explicit preference towards simple models

Learning

- Learning = optimization problem. Various criteria:
 - Mean square error

$$\mathbf{w}^* = \arg\min_{\mathbf{w}} Error(\mathbf{w}) \qquad Error(\mathbf{w}) = \frac{1}{N} \sum_{i=1,...N} (y_i - f(x_i, \mathbf{w}))^2$$

- Maximum likelihood (ML) criterion

$$\Theta^* = \underset{\Theta}{\operatorname{arg max}} P(D \mid \Theta)$$
 $Error(\Theta) = -\log P(D \mid \Theta)$

- Maximum posterior probability (MAP)

$$\Theta^* = \underset{\Theta}{\operatorname{arg max}} P(\Theta \mid D) \qquad P(\Theta \mid D) = \frac{P(D \mid \Theta)P(\Theta)}{P(D)}$$

Learning

Learning = optimization problem

- Optimization problems can be hard to solve. Right choice of a model and an error function makes a difference.
- Parameter optimizations
 - Gradient descent, Conjugate gradient (1st order method)
 - Newton-Rhapson (2nd order method)
 - Levenberg-Marquard

Some can be carried on-line on a sample by sample basis

Combinatorial optimizations (over discrete spaces):

- Hill-climbing
- Simulated-annealing
- · Genetic algorithms

CS 2750 Machine Learning

Parametric optimizations

- Sometimes can be solved directly but this depends on the error function and the model
 - **Example:** squared error criterion for linear regression
- Very often the error function to be optimized is not that nice.

$$Error(\mathbf{w}) = f(\mathbf{w})$$
 $\mathbf{w} = (w_0, w_1, w_2 \dots w_k)$

- a complex function of weights (parameters)

Goal:
$$\mathbf{w}^* = \arg\min_{\mathbf{w}} f(\mathbf{w})$$

- One solution: iterative optimization methods
- Example: Gradient-descent method

Idea: move the weights (free parameters) gradually in the error decreasing direction

Gradient descent method

Descend to the minimum of the function using the gradient information

w * W

Change the parameter value of w according to the gradient
$$w \leftarrow w^* - \alpha \frac{\partial}{\partial w} Error(w)|_{w^*}$$

CS 2750 Machine Learning

Gradient descent method

New value of the parameter

$$w \leftarrow w^* - \alpha \frac{\partial}{\partial w} Error(w)|_{w^*}$$

 $\alpha > 0$ - a learning rate (scales the gradient changes)

Gradient descent method

To get to the function minimum repeat (iterate) the gradient based update few times

- **Problems:** local optima, saddle points, slow convergence
- More complex optimization techniques use additional information (e.g. second derivatives)

CS 2750 Machine Learning

On-line learning (optimization)

• Error function looks at all data points at the same time
E.g.
$$Error(\mathbf{w}) = \frac{1}{n} \sum_{i=1,...n} (y_i - f(x_i, \mathbf{w}))^2$$

On-line error - separates the contribution from a data point

$$Error_{ON-LINE}(\mathbf{w}) = (y_i - f(x_i, \mathbf{w}))^2$$

Example: On-line gradient descent

- Advantages: 1. simple learning algorithm
 - 2. no need to store data (on-line data streams)

Evaluation.

- Simple holdout method.
 - Divide the data to the training and test data.
- Other more complex methods
 - Based on random re-sampling validation schemes:
 - cross-validation, random sub-sampling.
- What if we want to compare the predictive performance on a classification or a regression problem for two different learning methods?
- Solution: compare the error results on the test data set
- **Possible answer**: the method with better (smaller) testing error gives a better generalization error.
- But we need to use statistics to validate the choice