CS 2750 Machine Learning Lecture 17

Bayesian belief networks.

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Modeling uncertainty with probabilities

- Full joint distribution: joint distribution over all random variables defining the domain
- it is sufficient to represent the complete domain and to do any type of probabilistic inferences

Problems:

- Space complexity. To store full joint distribution requires to remember $O\left(\mathrm{~d}^{\mathrm{n}}\right)$ numbers.
n - number of random variables, d - number of values
- Inference complexity. To compute some queries requires .$O\left(\mathrm{~d}^{\mathrm{n}}\right)$ steps.
- Acquisition problem. Who is going to define all of the probability entries?

Pneumonia example. Complexities.

- Space complexity.
- Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), WBCcount (3: high, normal, low), paleness (2: T,F)
- Number of assignments: $2 * 2 * 2 * 3 * 2=48$
- We need to define at least 47 probabilities.
- Time complexity.
- Assume we need to compute the probability of Pneumonia=T from the full joint
$P($ Pneumonia $=T)=$
$=\sum_{i \in T, F} \sum_{j \in T, F} \sum_{k=h, n, u \in T, F} \sum_{u(\text { Fever }}=i$, Cough $=j$, WBCcount $=k$, Pale $\left.=u\right)$
- Sum over $2 * 2 * 3 * 2=24$ combinations

Bayesian belief networks (BBNs)

Bayesian belief networks.

- Represent the full joint distribution over the variables more compactly with a smaller number of parameters.
- Take advantage of conditional and marginal independences among random variables
- A and B are independent

$$
P(A, B)=P(A) P(B)
$$

- A and B are conditionally independent given \mathbf{C}

$$
\begin{aligned}
& P(A, B \mid C)=P(A \mid C) P(B \mid C) \\
& P(A \mid C, B)=P(A \mid C)
\end{aligned}
$$

Bayesian belief network.

1. Directed acyclic graph

- Nodes $=$ random variables
- Links = missing links encode independences.

Bayesian belief network.

2. Local conditional distributions

- relate variables and their parents

Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional distributions (obtained via the chain rule):

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Example:

Assume the following assignment of values to random variables

$$
B=T, E=T, A=T, J=T, M=F
$$

Then its probability is:

$$
\begin{aligned}
& P(B=T, E=T, A=T, J=T, M=F)= \\
& \quad P(B=T) P(E=T) P(A=T \mid B=T, E=T) P(J=T \mid A=T) P(M=F \mid A=T)
\end{aligned}
$$

Bayesian belief networks (BBNs)

Bayesian belief networks

- Represent the full joint distribution over the variables more compactly using the product of local conditionals.
- But how did we get to local parameterizations?

Answer:

- Graphical structure encodes conditional and marginal independences among random variables
- \mathbf{A} and \mathbf{B} are independent $P(A, B)=P(A) P(B)$
- A and B are conditionally independent given \mathbf{C}

$$
\begin{gathered}
P(A \mid C, B)=P(A \mid C) \\
P(A, B \mid C)=P(A \mid C) P(B \mid C)
\end{gathered}
$$

- The graph structure implies the decomposition !!!

Independences in BBNs

3 basic independence structures:
1.

2.

Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

$$
\begin{gathered}
P(J \mid A, B)=P(J \mid A) \\
P(J, B \mid A)=P(J \mid A) P(B \mid A)
\end{gathered}
$$

Independences in BBNs

1.

2. Burglary is independent of Earthquake (not knowing Alarm) Burglary and Earthquake become dependent given Alarm !!

$$
P(B, E)=P(B) P(E)
$$

Independences in BBN

- BBN distribution models many conditional independence relations relating distant variables and sets
- These are defined in terms of the graphical criterion called dseparation
- D-separation in the graph
- Let X,Y and Z be three sets of nodes
- If X and Y are d -separated by Z then X and Y are conditionally independent given Z
- D-separation :
- A is d-separated from B given \mathbf{C} if every undirected path between them is blocked
- Path blocking
- 3 cases that expand on three basic independence structures

Undirected path blocking

- 1. With linear substructure

- 2. With wedge substructure

- 3. With vee substructure

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:
$P(B=T, E=T, A=T, J=T, M=F)=$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:
$P(B=T, E=T, A=T, J=T, M=F)=$

$=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$
$=\underline{P(J=T \mid A=T)} P(B=T, E=T, A=T, M=F)$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:
$P(B=T, E=T, A=T, J=T, M=F)=$

$=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$
$=\underline{P(J=T \mid A=T}) P(B=T, E=T, A=T, M=F)$
$P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)$
$\underline{P(M=F \mid A=T)} P(B=T, E=T, A=T)$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
P(B=T, E=T, A=T, J=T, M=F)=
$$

$=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$
$=\underline{P(J=T \mid A=T}) P(B=T, E=T, A=T, M=F)$
$P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)$
$P(M=F \mid A=T) P(B=T, E=T, A=T)$
$\underline{P(A=T \mid B=T, E=T)} P(B=T, E=T)$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$$
\begin{array}{r}
P(B=T, E=T, A=T, J=T, M=F)= \\
=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F) \\
=P(J=T \mid A=T) P(B=T, E=T, A=T, M=F) \\
P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T) \\
\frac{P(M=F \mid A=T)}{P(B=T, E=T, A=T)} \\
\underline{P(A=T \mid B=T, E=T)} P(B=T, E=T) \\
P(B=T) P(E=T)
\end{array}
$$

Full joint distribution in BBNs

Rewrite the full joint probability using the product rule:

$P(B=T, E=T, A=T, J=T, M=F)=$
$=P(J=T \mid B=T, E=T, A=T, M=F) P(B=T, E=T, A=T, M=F)$
$=\underline{P(J=T \mid A=T}) P(B=T, E=T, A=T, M=F)$
$P(M=F \mid B=T, E=T, A=T) P(B=T, E=T, A=T)$
$\underline{P(M=F \mid A=T)} P(B=T, E=T, A=T)$

$=P(J=T \mid A=T) P(M=F \mid A=T) P(A=T \mid B=T, E=T) P(B=T) P(E=T)$

Parameter complexity problem

- In the BBN the full joint distribution is expressed as a product of conditionals (of smaller) complexity

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

Parameters:
full joint: ?
BBN: ?

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, . . n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

- What did we save?

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\begin{aligned}
& \quad \mathbf{P}\left(X_{1}, X_{2}, . ., X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right) \\
& \text { - What did we save? }
\end{aligned}
$$

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

\# of parameters of the BBN: ?

Bayesian belief network.

- In the BBN the full joint distribution is expressed using a set of local conditional distributions

Bayesian belief network.

- In the BBN the full joint distribution is expressed using a set of local conditional distributions

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\left.\begin{array}{l}
\mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)
\end{array}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

- What did we save?

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

\# of parameters of the BBN:

$$
2^{3}+2\left(2^{2}\right)+2(2)=20
$$

One parameter in every conditional is for free:

Parameter complexity problem

- In the BBN the full joint distribution is defined as:

$$
\mathbf{P}\left(X_{1}, X_{2}, \ldots, X_{n}\right)=\prod_{i=1, \ldots n} \mathbf{P}\left(X_{i} \mid p a\left(X_{i}\right)\right)
$$

- What did we save?

Alarm example: 5 binary (True, False) variables \# of parameters of the full joint:

$$
2^{5}=32
$$

One parameter is for free:

$$
2^{5}-1=31
$$

\# of parameters of the BBN:

$$
2^{3}+2\left(2^{2}\right)+2(2)=20
$$

One parameter in every conditional is for free:

$$
2^{2}+2(2)+2(1)=10
$$

Model acquisition problem

The structure of the BBN typically reflects causal relations

- BBNs are also sometime referred to as causal networks
- Causal structure is very intuitive in many applications domain and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional distributions relating a random variable and its parents only

- Their complexity much smaller than the full joint
- Easier to come up (estimate) the probabilities from expert or automatically by learning from data

BBNs built in practice

- In various areas:
- Intelligent user interfaces (Microsoft)
- Troubleshooting, diagnosis of a technical device
- Medical diagnosis:
- Pathfinder (Intellipath)
- CPSC
- Munin
- QMR-DT
- Collaborative filtering
- Military applications
- Insurance, credit applications

Diagnosis of car engine

- Diagnose the engine start problem

Car insurance example

- Predict claim costs (medical, liability) based on application data

CPCS

- Computer-based Patient Case Simulation system (CPCS-PM) developed by Parker and Miller (at University of Pittsburgh)
- 422 nodes and 867 arcs

CS 2750 Machine Learning

QMR-DT

- Medical diagnosis in internal medicine
- Bipartite network of disease/findings relations
- Derived from the Internist-1/QMR knowledge base

QMR-DT derived from Internist-1/ QMR KB

