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Bayesian belief networks.

CS 2750 Machine Learning

Modeling uncertainty with probabilities

• Full joint distribution: joint distribution over all random 
variables defining the domain
– it is sufficient to represent the complete domain and to do 

any type of probabilistic  inferences 

Problems:
– Space complexity. To store full joint distribution requires 

to remember             numbers.
n – number of random variables, d – number of values

– Inference complexity. To compute some queries requires        
.            steps. 

– Acquisition problem. Who is going to define all of the 
probability entries?       
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Pneumonia example. Complexities.

• Space complexity. 
– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), paleness (2: T,F)
– Number of assignments: 2*2*2*3*2=48
– We need to define at least 47 probabilities.

• Time complexity.
– Assume we need to compute the probability of 

Pneumonia=T from the full joint

– Sum over 2*2*3*2=24 combinations
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Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 
• Take advantage of conditional and marginal independences

among random variables

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables
• Links = missing links encode independences.
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Bayesian belief network.

2. Local conditional distributions 
• relate variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):
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Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP =========

Then its probability is:

Assume the following assignment
of values to random variables

FMTJTATETB ===== ,,,,
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Bayesian belief networks (BBNs)

Bayesian belief networks 
• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 
• But how did we get to local parameterizations?
Answer:
• Graphical structure encodes conditional and marginal 

independences among random variables
• A and B are independent
• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Independences in BBNs
3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.
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Independences in BBNs

1. JohnCalls is independent of Burglary given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

)|(),|( AJPBAJP =
)|()|()|,( ABPAJPABJP =
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Independences in BBNs

2.   Burglary is independent of Earthquake (not knowing Alarm) 
Burglary and Earthquake become dependent given Alarm !!

Burglary

JohnCalls

Alarm

JohnCalls

Alarm

MaryCalls

1. 3.

)()(),( EPBPEBP =

Burglary

Alarm

Earthquake

2.
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Independences in BBNs

3.   MaryCalls is independent of JohnCalls given Alarm

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

1. 2.

JohnCalls

Alarm

3.

MaryCalls

)|(),|( AJPMAJP =

)|()|()|,( AMPAJPAMJP =
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Independences in BBN

• BBN distribution models many conditional independence 
relations relating distant variables and sets

• These are defined in terms of the graphical criterion called d-
separation

• D-separation in the graph
– Let X,Y and Z be three sets of nodes
– If X and Y are d-separated by Z then X and Y are 

conditionally independent given Z
• D-separation :

– A is d-separated from B given C if every undirected path 
between them is blocked

• Path blocking
– 3 cases that expand on three basic independence structures
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Undirected path blocking

• 1.  With linear substructure

• 2.  With wedge substructure

• 3.  With vee substructure

Z in C

Z in C

X Y

Z or any of its descendants not in C

X

X

Y

Y
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

)()(),|()|()|( TEPTBPTETBTAPTAFMPTATJP ==========

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:
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Parameters:
full joint:        ?

BBN:     ?

Parameter complexity problem

• In the BBN the full joint distribution is expressed as a product
of conditionals (of smaller) complexity

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
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# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
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3225 =

3112 5 =−
One parameter is for free:
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# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1
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3225 =

3112 5 =−
One parameter is for free:

# of parameters of the BBN: ? 
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

• In the BBN the full joint distribution is expressed using a set 
of local conditional distributions
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

• In the BBN the full joint distribution is expressed using a set 
of local conditional distributions

2 2

8

4 4
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# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls
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3225 =

3112 5 =−
One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 =++
One parameter in every conditional is for free: 

?
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# of parameters of the full joint: 

Parameter complexity problem
• In the BBN the full joint distribution is defined as:

• What did we save?
Alarm example: 5 binary (True, False) variables

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls
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3225 =

3112 5 =−
One parameter is for free:

# of parameters of the BBN:

20)2(2)2(22 23 =++

10)1(2)2(22 2 =++
One parameter in every conditional is for free: 
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Model acquisition problem

The structure of the BBN typically reflects causal relations
• BBNs are also sometime referred to as causal networks
• Causal structure is very intuitive in many applications domain 

and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional 
distributions relating a random variable and its parents only

• Their complexity much smaller than the full joint
• Easier to come up (estimate) the probabilities from expert or 

automatically by learning from data
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BBNs built in practice

• In various areas:
– Intelligent user interfaces (Microsoft)
– Troubleshooting, diagnosis of a technical device
– Medical diagnosis:

• Pathfinder (Intellipath)
• CPSC
• Munin
• QMR-DT

– Collaborative filtering
– Military applications
– Insurance, credit applications
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Diagnosis of car engine

• Diagnose the engine start problem 

CS 2750 Machine Learning

Car insurance example

• Predict claim costs (medical, liability) based on application data
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(ICU) Alarm network

CS 2750 Machine Learning

CPCS
• Computer-based Patient Case Simulation system (CPCS-PM) 

developed by Parker and Miller (at University of Pittsburgh)
• 422 nodes and 867 arcs
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QMR-DT 

• Medical diagnosis in internal medicine
– Bipartite network of disease/findings relations
– Derived from the Internist-1/QMR knowledge base


