CS 2750 Machine Learning

 Lecture 15
Support vector machines for regression

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Support vector machines

- The decision boundary:

$$
\hat{\mathbf{w}}^{T} \mathbf{x}+w_{0}=\sum_{i \in S V} \hat{\alpha}_{i} y_{i}\left(\mathbf{x}_{i}^{T} \mathbf{x}\right)+w_{0}
$$

- The decision:

$$
\hat{y}=\operatorname{sign}\left[\sum_{i \in S V} \hat{\alpha}_{i} y\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}+w_{0}\right]\right.
$$

- (!!):
- Decision on a new \mathbf{x} requires to compute the inner product between the examples ($\mathbf{x}_{i}{ }^{T} \mathbf{x}$)
- Similarly, the optimization depends on $\left(\mathbf{x}_{i}{ }^{T} \mathbf{x}_{j}\right)$

$$
J(\alpha)=\sum_{i=1}^{n} \alpha_{i}-\frac{1}{2} \sum_{i, j=1}^{n} \alpha_{i} \alpha_{j} y_{i} y_{j}\left(\mathbf{x}_{i}^{T} \mathbf{x}_{j}\right)
$$

Nonlinear case

- The linear case requires to compute ($\mathbf{x}_{i}{ }^{T} \mathbf{x}$)
- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors

$$
\mathbf{x} \rightarrow \varphi(\mathbf{x})
$$

- It is possible to use SVM formalism on feature vectors

$$
\boldsymbol{\varphi}(\mathbf{x})^{T} \boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)
$$

- Kernel function

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\boldsymbol{\varphi}(\mathbf{x})^{T} \boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)
$$

- Crucial idea: If we choose the kernel function wisely we can compute linear separation in the feature space implicitly such that we keep working in the original input space !!!!

Kernel function example

- Assume $\mathbf{x}=\left[x_{1}, x_{2}\right]^{T}$ and a feature mapping that maps the input into a quadratic feature set

$$
\mathbf{x} \rightarrow \boldsymbol{\varphi}(\mathbf{x})=\left[x_{1}^{2}, x_{2}^{2}, \sqrt{2} x_{1} x_{2}, \sqrt{2} x_{1}, \sqrt{2} x_{2}, 1\right]^{T}
$$

- Kernel function for the feature space:

$$
\begin{aligned}
K\left(\mathbf{x}^{\prime}, \mathbf{x}\right) & =\boldsymbol{\varphi}\left(\mathbf{x}^{\prime}\right)^{T} \boldsymbol{\varphi}(\mathbf{x}) \\
& =x_{1}^{2} x_{1}^{\prime 2}+x_{2}^{2} x_{2}^{\prime 2}+2 x_{1} x_{2} x_{1}^{\prime} x_{2}^{\prime}+2 x_{1} x_{1}^{\prime}+2 x_{2} x_{2}^{\prime}+1 \\
& =\left(x_{1} x_{1}^{\prime}+x_{2} x_{2}^{\prime}+1\right)^{2} \\
& =\left(1+\left(\mathbf{x}^{T} \mathbf{x}^{\prime}\right)\right)^{2}
\end{aligned}
$$

- The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

Kernel functions

- Linear kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\mathbf{x}^{T} \mathbf{x}^{\prime}
$$

- Polynomial kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\left[1+\mathbf{x}^{T} \mathbf{x}^{\prime}\right]^{k}
$$

- Radial basis kernel

$$
K\left(\mathbf{x}, \mathbf{x}^{\prime}\right)=\exp \left[-\frac{1}{2}\left\|\mathbf{x}-\mathbf{x}^{\prime}\right\|^{2}\right]
$$

Kernels

- The dot product $\mathbf{x}^{T} \mathbf{x}$ is a distance measure
- Kernels can be seen as distance measures
- Or conversely express degree of similarity
- Design criteria - we want kernels to be
- valid - Satisfy Mercer condition of positive semidefiniteness
- good - embody the "true similarity" between objects
- appropriate - generalize well
- efficient - the computation of $k\left(x, x^{\prime}\right)$ is feasible
- NP-hard problems abound with graphs

Kernels

- Research have proposed kernels for comparison of variety of objects:
- Strings
- Trees
- Graphs
- Cool thing:
- SVM algorithm can be now applied to classify a variety of objects

Support vector machine SVM

- SVM maximize the margin around the separating hyperplane.
- The decision function is fully specified by a subset of the training data, the support vectors.

Support vector machine for regression

- Regression $=$ find a function that fits the data.
- A data point may be wrong due to the noise
- Idea: Error from points which are close should count as a valid noise
- Line should be influenced by the real data not the noise.

Linear model

- Training data:

$$
\left\{\left(x_{1}, y_{1}\right), \ldots, \quad\left(x_{l}, y_{l}\right)\right\}, \quad x \in R^{n}, y \in R
$$

- Our goal is to find a function $\mathrm{f}(\mathrm{x})$ that has at most ε deviation from the actually obtained target for all the training data.

$$
f(\mathbf{x})=\mathbf{w}^{\mathbf{T}} \mathbf{x}+b=\langle\mathbf{w}, \mathbf{x}\rangle+b
$$

Linear model

Linear function:

$$
f(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \mathbf{x}+b=\langle\mathbf{w}, \mathbf{x}\rangle+b
$$

We want a function that is:

- flat: means that one seeks small w
- all data points are within its ε neighborhood

The problem can be formulated as a convex optimization problem:

$$
\begin{array}{ll}
\operatorname{minimize} & \frac{1}{2}\|w\|^{2} \\
\text { subject to } & \left\{\begin{array}{l}
\mathrm{y}_{\mathrm{i}}-\left\langle w_{i}, x_{i}\right\rangle-b \leq \varepsilon \\
\left\langle w_{i}, x_{i}\right\rangle+b-\mathrm{y}_{\mathrm{i}} \leq \varepsilon
\end{array}\right.
\end{array}
$$

All data points are assumed to be in the ε neighborhood

Linear model

- Real data: not all data points always fall into the ε neighborhood

$$
f(\mathbf{x})=\mathbf{w}^{\mathbf{T}} \mathbf{x}+b=\langle\mathbf{w}, \mathbf{x}\rangle+b
$$

- Idea: penalize points that fall outside the ε neighborhood

Linear model

Linear function:

$$
f(\mathbf{x})=\mathbf{w}^{\mathrm{T}} \mathbf{x}+b=\langle\mathbf{w}, \mathbf{x}\rangle+b
$$

Idea: penalize points that fall outside the ε neighborhood
minimize $\quad \frac{1}{2}\|w\|^{2}+C \sum_{i=1}^{l}\left(\xi_{i}+\xi_{i}^{*}\right)$
subject to $\left\{\begin{array}{l}\mathrm{y}_{\mathrm{i}}-\left\langle w_{i}, x_{i}\right\rangle-b \leq \varepsilon+\xi_{i} \\ \left\langle w_{i}, x_{i}\right\rangle+b-\mathrm{y}_{\mathrm{i}} \leq \varepsilon+\xi_{i} \\ \xi_{i}, \xi_{i}^{*} \geq 0\end{array}\right.$

Linear model

$$
|\xi|_{\varepsilon}=\left\{\begin{array}{lc}
0 & \text { for }|\xi| \leq \varepsilon \\
|\xi|-\varepsilon & \text { otherwise }
\end{array}\right.
$$

ε-intensive loss function

Optimization

Lagrangian that solves the optimization problem

$$
\begin{aligned}
L= & \frac{1}{2}\langle w, w\rangle+C \sum_{i=1}^{l}\left(\xi_{i}+\xi_{i}^{*}\right) \\
& -\sum_{i=1}^{l} a_{i}\left(\varepsilon-\xi_{i}-y_{i}+\left\langle w, x_{i}\right\rangle+b\right)-\sum_{i=1}^{l} a_{i}^{*}\left(\varepsilon+\xi_{i}^{*}+y_{i}-\left\langle w, x_{i}\right\rangle-b\right) \\
& -\sum_{i=1}^{l}\left(\eta_{i} \xi_{i}+\eta_{i}^{*} \xi_{i}^{*}\right)
\end{aligned}
$$

Subject to $\quad a_{i}, a_{i}^{*}, \eta_{i}, \eta_{i}^{*} \geq 0$
Primal variables $\quad w, b, \xi_{i}, \xi_{i}^{*}$

Optimization

Derivatives with respect to primal variables

$$
\begin{aligned}
& \frac{\partial L}{\partial b}=\sum_{i=1}^{l}\left(a_{i}^{*}-a_{i}\right)=0 \\
& \frac{\partial L}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{l}\left(a_{i}^{*}-a_{i}\right) \mathbf{x}_{i}=\mathbf{0} \\
& \frac{\partial L}{\partial \xi_{i}^{(*)}}=C-a_{i}^{(*)}-\eta_{i}^{(*)}=0 \\
& \frac{\partial L}{\partial \xi_{i}}=C-a_{i}-\eta_{i}=0
\end{aligned}
$$

Optimization

$L=\frac{1}{2}\langle w, w\rangle+\sum_{i=1}^{l} C \xi_{i}+\sum_{i=1}^{l} C \xi_{i}^{*}$
$-\sum_{i=1}^{l} a_{i} \varepsilon-\sum_{i=1}^{l} a_{i} \xi_{i}-\sum_{i=1}^{l} a_{i} y_{i}-\sum_{i=1}^{l} a_{i}\left\langle\omega, x_{i}\right\rangle+\sum_{i=1}^{l} a_{i} b$
$-\sum_{i=1}^{l} a_{i}^{*} \varepsilon-\sum_{i=1}^{l} a_{i}^{*} \xi_{i}^{*}-\sum_{i=1}^{l} a_{i}^{*} y_{i}+\sum_{i=1}^{l} a_{i}^{*}\left\langle\omega, x_{i}\right\rangle+\sum_{i=1}^{l} a_{i}^{*} b$
$-\sum_{i=1}^{l} \eta_{i} \xi_{i}-\sum_{i=1}^{l} \eta_{i}^{*} \xi_{i}^{*}$

Optimization

$$
\begin{aligned}
& L=\frac{1}{2}\langle w, w\rangle+\sum_{i=1}^{l} \xi_{i} \underbrace{\left(C-\eta_{i}-a_{i}\right)}_{=0\left(C-\eta_{i}^{(*)}-a_{i}^{(*)}=0\right)}+ \\
& \sum_{i=1}^{l} \xi_{i}^{\xi_{i}^{*}} \underbrace{\left(C-\eta_{i}^{*}-a_{i}^{*}\right)}_{=0\left(C-\eta_{i}^{(*)}-a_{i}^{(*)}=0\right)}-\sum_{i=1}^{l}\left(a_{i}+a_{i}^{*}\right) \varepsilon-\sum_{i=1}^{l}\left(a_{i}+a_{i}^{*}\right) y_{i} \\
& -\sum_{i=1}^{l} \underbrace{\left(a_{i}-a_{i}^{*}\right)\left\langle\omega, x_{i}\right\rangle}_{=\langle w, w\rangle\left(\omega=\sum_{i=1}^{l}\left(a_{i}+a_{i}^{*}\right) x_{i}\right)}+\sum_{i=1}^{l} \underbrace{\left(a_{i}^{*}-a_{i}\right) b}_{=0\left(\sum_{i=1}^{l}\left(a_{i}^{*}-a_{i}\right)=0\right)}
\end{aligned}
$$

Optimization

$$
L=-\frac{1}{2}\langle w, w\rangle-\sum_{i=1}^{l}\left(a_{i}+a_{i}^{*}\right) \varepsilon-\sum_{i=1}^{l}\left(a_{i}+a_{i}^{*}\right) y_{i}
$$

Maximize the dual

$$
\begin{aligned}
L\left(a, a^{*}\right)= & -\frac{1}{2} \sum_{i=1}^{l}\left(a_{i}-a_{i}^{*}\right)\left(a_{j}-a_{j}^{*}\right)\left\langle x_{i}, x_{j}\right\rangle \\
& -\sum_{i=1}^{l}\left(a_{i}+a_{i}^{*}\right) \varepsilon-\sum_{i=1}^{l}\left(a_{i}+a_{i}^{*}\right) y_{i}
\end{aligned}
$$

subject to

$$
:\left\{\begin{array}{l}
\sum_{i=1}^{l}\left(a_{i}-a_{i}^{*}\right)=0 \\
a_{i}, a_{i}^{*} \in[0, C]
\end{array}\right.
$$

Solution

$$
\begin{aligned}
& \frac{\partial L}{\partial \mathbf{w}}=\mathbf{w}-\sum_{i=1}^{l}\left(a_{i}^{*}-a_{i}\right) \mathbf{x}_{i}=\mathbf{0} \\
& \mathbf{w}=\sum_{i=1}^{l}\left(a_{i}-a_{i}^{*}\right) \mathbf{x}_{i}
\end{aligned}
$$

We can get:

$$
f(\mathbf{x})=\sum_{i=1}^{l}\left(a_{i}-a_{i}^{*}\right)\left\langle\mathbf{x}_{\mathbf{i}}, \mathbf{x}\right\rangle+b
$$

at the optimal solution the Lagrange multipliers are non-zero only for points outside the $\boldsymbol{\varepsilon}$ band.

Nonlinear extension

Kernel trick

- Replace the inner product with a kernel
- A well chosen kernel leads to efficient computation

Evaluation metrics

Confusion matrix: Records the percentages of examples in the testing set that fall into each group

		Actual	
		Case	Control
Prediction	Case	$\begin{aligned} & \text { TP } \\ & 0.3 \end{aligned}$	$\begin{aligned} & \text { FP } \\ & \mathbf{0 . 1} \end{aligned}$
	Control	$\begin{aligned} & \text { FN } \\ & \mathbf{0 . 2} \end{aligned}$	$\begin{aligned} & \text { TN } \\ & \mathbf{0 . 4} \end{aligned}$

Misclassification error:

$$
E=F P+F N
$$

Sensitivity:

$$
S N=\frac{T P}{T P+F N}
$$

Specificity:

$$
S P=\frac{T N}{T N+F P}
$$

Evaluation

- Problem: if the sample size is relatively small one split may be lucky or unlucky hence biasing the statistics
- Solution: use multiple train/test splits and average their results
- Random resampling validation techniques:
- random sub-sampling
- k-fold cross-validation
- bootstrap-based validation

Random sub-sampling

- Split the data into train and test set with some split ratio (typically 70:30)
- Repeat this k times for different random splits
- Average the results of statistics

K-fold cross-validation

- Split the data into k equal size groups
- Use each group once as a test set, and the remaining groups as the training set
- Repeat this k times for k groups
- Average the results of statistics

Bootstrap-based validation

- Bootstrap technique -used primarily to estimate the sampling distribution of an estimator
- Generate randomly with replacement a training dataset of size n that equals the original data size
- Some examples are repeated in the training set, some are missing
- Build a test set from examples not used in the training set.

