CS 2750 Machine Learning Lecture 15

Support vector machines for regression

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

Nonlinear case

- The linear case requires to compute $(\mathbf{x}_i^T \mathbf{x})$
- The non-linear case can be handled by using a set of features. Essentially we map input vectors to (larger) feature vectors

 $x \rightarrow \phi(x)$

• It is possible to use SVM formalism on feature vectors

$$\boldsymbol{\varphi}(\mathbf{x})^T \boldsymbol{\varphi}(\mathbf{x}')$$

Kernel function

$$K(\mathbf{x},\mathbf{x}') = \boldsymbol{\varphi}(\mathbf{x})^T \boldsymbol{\varphi}(\mathbf{x}')$$

• **Crucial idea:** If we choose the kernel function wisely we can compute linear separation in the feature space implicitly such that we keep working in the original input space !!!!

CS 2750 Machine Learning

Kernel function example

• Assume $\mathbf{x} = [x_1, x_2]^T$ and a feature mapping that maps the input into a quadratic feature set

$$\mathbf{x} \to \mathbf{\phi}(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

• Kernel function for the feature space:

$$K(\mathbf{x'}, \mathbf{x}) = \boldsymbol{\varphi}(\mathbf{x'})^T \boldsymbol{\varphi}(\mathbf{x})$$

= $x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_2 x_1' x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$
= $(x_1 x_1' + x_2 x_2' + 1)^2$
= $(1 + (\mathbf{x}^T \mathbf{x}'))^2$

• The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

Kernels

- The dot product $\mathbf{x}^T \mathbf{x}$ is a **distance measure**
- Kernels can be seen as distance measures
 - Or conversely express degree of similarity
- Design criteria we want kernels to be
 - valid Satisfy Mercer condition of positive semidefiniteness
 - good embody the "true similarity" between objects
 - appropriate generalize well
 - efficient the computation of k(x,x') is feasible
 - NP-hard problems abound with graphs

Linear model

Linear function:

$$f(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$$

We want a function that is:

- flat: means that one seeks small w
- all data points are within its ε neighborhood

The problem can be formulated as a **convex optimization problem:**

minimize
$$\frac{1}{2} \|w\|^2$$

subject to $\begin{cases} y_i - \langle w_i, x_i \rangle - b \le \varepsilon \\ \langle w_i, x_i \rangle + b - y_i \le \varepsilon \end{cases}$

All data points are assumed to be in the ε neighborhood

Linear model	
Linear function: $f(\mathbf{x}) = \mathbf{w}^{T}\mathbf{x} + b = \langle \mathbf{w}, \mathbf{x} \rangle + b$	
Idea: penalize points that fall outside the ε neighborhood	
minimize	$\frac{1}{2} \ w\ ^2 + C \sum_{i=1}^{l} (\xi_i + \xi_i^*)$
subject to	$\begin{cases} y_{i} - \langle w_{i}, x_{i} \rangle - b \leq \varepsilon + \xi_{i} \\ \langle w_{i}, x_{i} \rangle + b - y_{i} \leq \varepsilon + \xi_{i}^{*} \\ \xi_{i}, \xi_{i}^{*} \geq 0 \end{cases}$
	CS 2750 Machina Learning

Optimization

Derivatives with respect to primal variables $\frac{\partial L}{\partial b} = \sum_{i=1}^{l} (a_i^* - a_i) = 0$ $\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{l} (a_i^* - a_i)\mathbf{x}_i = \mathbf{0}$ $\frac{\partial L}{\partial \xi_i^{(*)}} = C - a_i^{(*)} - \eta_i^{(*)} = 0$ $\frac{\partial L}{\partial \xi_i} = C - a_i - \eta_i = 0$

Solution

$$\frac{\partial L}{\partial \mathbf{w}} = \mathbf{w} - \sum_{i=1}^{l} (a_i^* - a_i) \mathbf{x}_i = \mathbf{0}$$
$$\mathbf{w} = \sum_{i=1}^{l} (a_i - a_i^*) \mathbf{x}_i$$

We can get:

$$f(\mathbf{x}) = \sum_{i=1}^{l} (a_i - a_i^*) \langle \mathbf{x}_i, \mathbf{x} \rangle + b$$

at the optimal solution the Lagrange multipliers are non-zero only for points outside the ε band.

