### CS 2750 Machine Learning Lecture 13

# **Multi-layer Neural Networks**

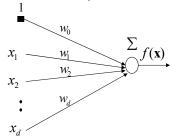
Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square

CS 2750 Machine Learning

### Limitations of basic linear units

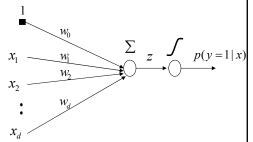
## **Linear regression**

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j x_j$$



#### Logistic regression

$$f(\mathbf{x}) = p(y = 1 | \mathbf{x}, \mathbf{w}) = g(w_0 + \sum_{j=1}^{d} w_j x_j)$$



Function linear in inputs!!

Linear decision boundary!!



#### **Linear regression**

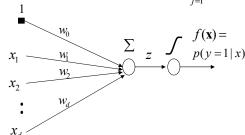
$$f(\mathbf{x}) = w_0 + \sum_{j=1}^d w_j x_j$$

$$x_1 \qquad w_0 \qquad \sum_{w_2} f(\mathbf{x})$$

$$x_2 \qquad w_d$$

#### **Logistic regression**

$$f(\mathbf{x}) = p(y=1|\mathbf{x},\mathbf{w}) = g(w_0 + \sum_{j=1}^{d} w_j x_j)$$

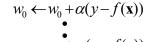


#### **On-line gradient update:**

$$w_0 \leftarrow w_0 + \alpha(y - f(\mathbf{x}))$$

$$w_1 \leftarrow w_1 + \alpha(y - f(\mathbf{x}))x_1$$

#### **On-line gradient update:**



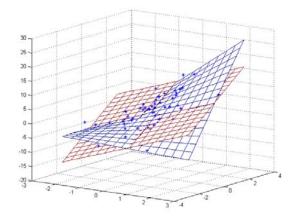
CS 2750 Machine Learning

The same

# Regression with the quadratic model.

**Limitation:** linear hyper-plane only

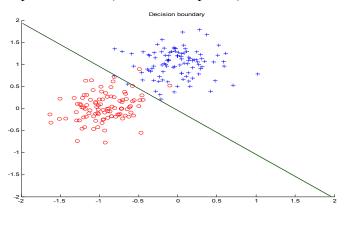
• a non-linear surface can be better



### Classification with the linear model.

#### Logistic regression model defines a linear decision boundary

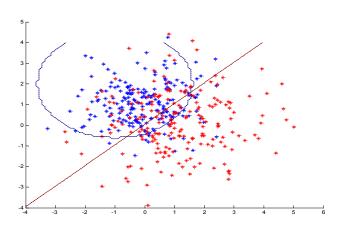
• Example: 2 classes (blue and red points)



CS 2750 Machine Learning

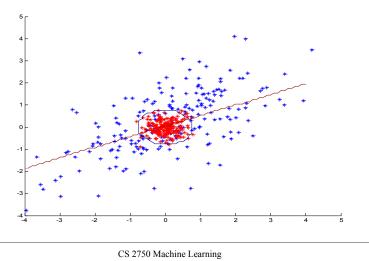
# Linear decision boundary

• logistic regression model is not optimal, but not that bad



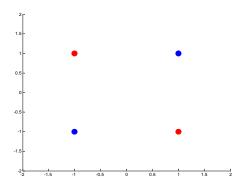
# When logistic regression fails?

• Example in which the logistic regression model fails



### Limitations of linear units.

Logistic regression does not work for parity functions
 no linear decision boundary exists



Solution: a model of a non-linear decision boundary

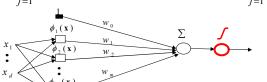
# Extensions of simple linear units

#### Feature (basis) functions model nonlinearities

#### **Linear regression**

### **Logistic regression**

$$f(\mathbf{x}) = w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}) \qquad f(\mathbf{x}) = g(w_0 + \sum_{j=1}^{m} w_j \phi_j(\mathbf{x}))$$



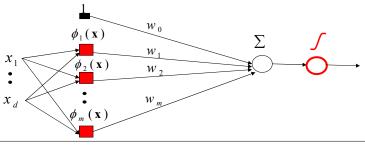
#### **Important property:**

• The same problem as learning of the weights for linear units, the input has changed—but the weights are linear in the new input **Problem:** too many weights to learn

CS 2750 Machine Learning

### Multi-layer neural networks

- Problems of extended linear units:
  - fixed basis functions,
  - too many weights
- One possible solution:
  - Assume parametric feature (basis) functions
  - Learn the parameters together with the remaining weights

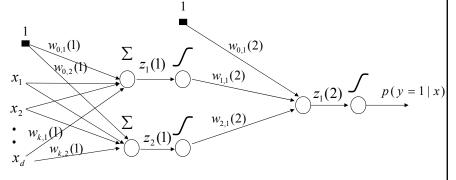


### Multilayer neural network

Also called a multilayer perceptron (MLP)

Cascades multiple logistic regression units

**Example:** (2 layer) classifier with non-linear decision boundaries

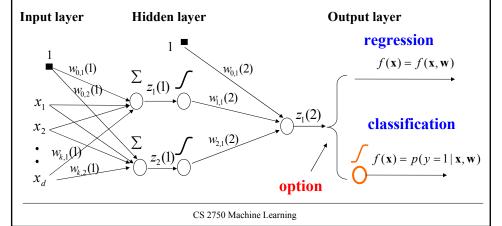


Input layer Hidden layer Output layer

CS 2750 Machine Learning

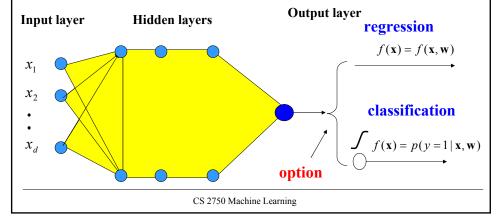
### Multilayer neural network

- Models non-linearities through logistic regression units
- Can be applied to both regression and binary classification problems



### Multilayer neural network

- Non-linearities are modeled using multiple hidden logistic regression units (organized in layers)
- The output layer determines whether it is a **regression or a** binary classification problem

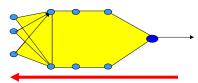


## Learning with MLP

- How to learn the parameters of the neural network?
- Onl-line gradient descent algorithm
  - Weight updates based on the error:  $J_{\text{online}}(D_i, \mathbf{w})$

$$w_j \leftarrow w_j - \alpha \frac{\partial}{\partial w_i} J_{\text{online}} (D_i, \mathbf{w})$$

- We need to compute gradients for weights in all units
- Can be computed in one backward sweep through the net !!!



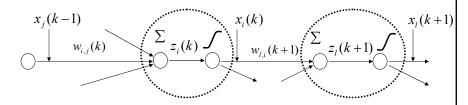
• The process is called **back-propagation** 

## **Backpropagation**

(k-1)-th level

k-th level

(k+1)-th level



- $x_i(k)$  output of the unit i on level k
- $z_i(k)$  input to the sigmoid function on level k
- $w_{i,j}(k)$  weight between units j and i on levels (k-1) and k

$$z_i(k) = w_{i,0}(k) + \sum_j w_{i,j}(k)x_j(k-1)$$

$$x_i(k) = g(z_i(k))$$

CS 2750 Machine Learning

### **Backpropagation**

**Update weight**  $w_{i,j}(k)$  using a data point  $D_u = \langle \mathbf{x}, y \rangle$ 

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w})$$

Let 
$$\delta_i(k) = \frac{\partial}{\partial z_i(k)} J_{online}(D_u, \mathbf{w})$$

Then: 
$$\frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w}) = \frac{\partial J_{online}(D_u, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

S.t.  $\delta_i(k)$  is computed from  $x_i(k)$  and the next layer  $\delta_i(k+1)$ 

$$\delta_i(k) = \left[\sum_{l} \delta_l(k+1) w_{l,i}(k+1)\right] x_i(k) (1 - x_i(k))$$

Last unit (is the same as for the regular linear units):

$$\delta_i(K) = -(y - f(\mathbf{x}, \mathbf{w}))$$

It is the same for the classification with the log-likelihood measure of fit and linear regression with least-squares error!!!

## **Learning with MLP**

- Online gradient descent algorithm
  - Weight update for example  $D_u$ :

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \frac{\partial}{\partial w_{i,j}(k)} J_{\text{online}}(D_u, \mathbf{w})$$

$$\frac{\partial}{\partial w_{i,j}(k)} J_{online}(D_u, \mathbf{w}) = \frac{\partial J_{online}(D_u, \mathbf{w})}{\partial z_i(k)} \frac{\partial z_i(k)}{\partial w_{i,j}(k)} = \delta_i(k) x_j(k-1)$$

$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

 $x_{j}(k-1)$  - j-th output of the (k-1) layer  $\delta_{i}(k)$  - derivative computed via backpropagation

- a learning rate

CS 2750 Machine Learning

### Online gradient descent algorithm for MLP

**Online-gradient-descent** (D, number of iterations)

**Initialize** all weights  $w_{i,j}(k)$ 

**for** i=1:1: number of iterations

**select** a data point  $D_u = \langle x, y \rangle$  from Ddo

set learning rate  $\alpha$ 

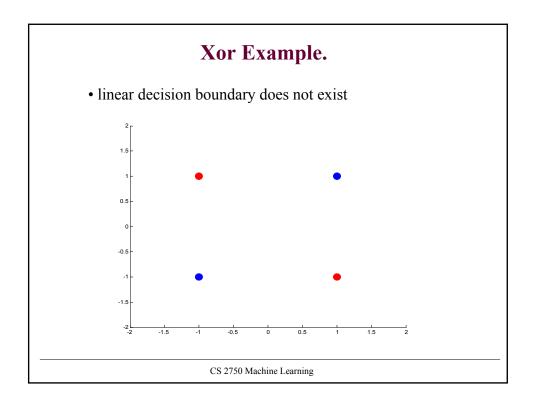
 $x_i(k)$  for each unit compute outputs

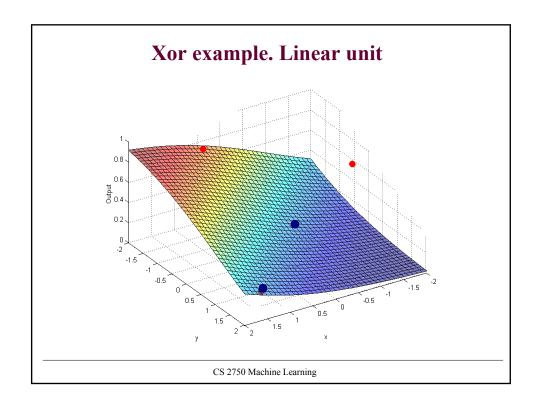
compute derivatives  $\delta_i(k)$  via backpropagation update all weights (in parallel)

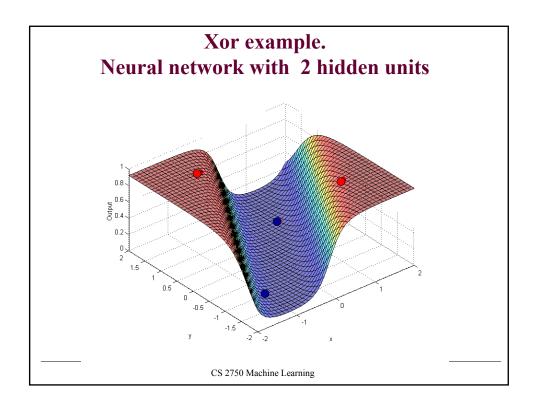
$$w_{i,j}(k) \leftarrow w_{i,j}(k) - \alpha \delta_i(k) x_j(k-1)$$

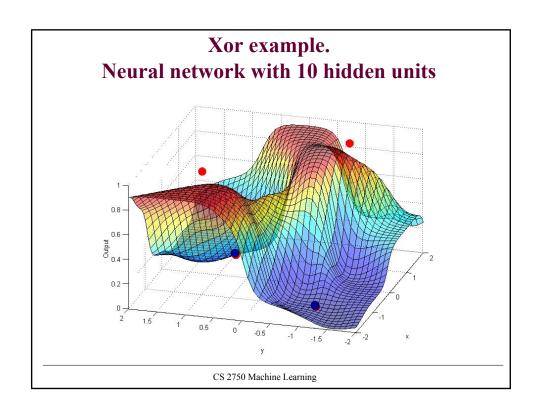
end for

return weights w









# **MLP** in practice

- Optical character recognition digits 20x20
  - Automatic sorting of mails
  - 5 layer network with multiple output functions

