
1

CS 2750 Machine Learning

CS 2750 Machine Learning
Lecture 11

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Multi-way classification

CS 2750 Machine Learning

Multi-way classification

• Binary classification
• Multi-way classification

– K classes
– Goal: learn to classify correctly K classes
– Or learn

• Errors:
– Zero-one (misclassification) error for an example:

– Mean misclassification error (for a dataset):
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Multi-way classification
Approaches: 
• Generative model approach

– Generative model of the distribution  p(x,y)
– Learns the parameters of the model through density 

estimation techniques
– Discriminant functions are based on the model

• “Indirect” learning of a classifier 
• Discriminative approach 

– Parametric discriminant functions 
– Learns discriminant functions directly

• A logistic regression model. 
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Generative model approach

Indirect:
1. Represent and learn the distribution
2. Define and use probabilistic discriminant functions

Model
• = Class-conditional distributions (densities)

k class- conditional distributions

• = Priors on classes  
• - probability of class y
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Multi-way classification. Example
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Multi-way classification
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Making class decision

Discriminant functions can be based on: 
• Likelihood of data – choose the class (Gaussian) that explains 

the input data (x) better (likelihood of the data)

• Posterior of a class – choose the class with higher posterior 
probability
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Discriminative approach
• Parameteric model of discriminant functions
• Learns the discriminant functions directly

How to learn to classify multiple classes, say 0,1,2?
Approach 1:

– A binary logistic regression on every class versus the rest

0 vs. (1 or 2)

1 vs. (0 or 2)

2 vs. (0 or 1)

1
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dx
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Multi-way classification. Example
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Multi-way classification. Approach 1.
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Multi-way classification. Approach 1.
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Multi-way classification. Approach 1.
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Discriminative approach.
How to learn to classify multiple classes, say 0,1,2 ?

Approach 2:
– A binary logistic regression on all pairs

0 vs. 1

0 vs. 2

1 vs. 2

1

1x

dx
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Multi-way classification. Example
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Multi-way classification. Approach 2
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Multi-way classification. Approach 2
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Multi-way classification with softmax
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Multi-way classification with softmax
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Learning of the softmax model

• Learning of parameters w: statistical view 

Multi- way
Coin toss











































































∈

1
..
0
0

..

0
..
1
0

0
..
0
1

y

x
)|0(0 x== yPµ

)|1(1 x−==− kyPkµ
ySoftmax

network

Assume outputs y are 
transformed as follows

{ }1..10 −∈ ky



11

CS 2750 Machine Learning

Learning of the softmax model

• Learning of the parameters w: statistical view
• Likelihood of outputs

• We want parameters w that maximize the likelihood
• Log-likelihood trick

– Optimize log- likelihood of outputs instead:

• Objective to optimize
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Learning of the softmax model

• Error to optimize:

• Gradient

• The same very easy gradient update as used for the binary 
logistic regression

• But now we have to update the weights of k networks
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Multi-way classification

• When is the softmax the right model ?

• Assume: 

x
)|0(0 x== yPµ

)|1(1 x−==− kyPkµ
Softmax
network
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Multi-way classification
• Class conditional:

• Class posterior:

∑ ==
==

==

j
jypjyp

iypiypxiyp
)()|(

)()|()|(
x

x

∑∑
+

+
=

=










 −

=






 −

=

j
j

T
j

i
T
i

j

j
T
j

i
T
i

b
b

jyp
a
A

h

iyp
a
Ah

)exp(
)exp(

)(
)(

))((
exp),(

)(
)(

))((exp),(

xw
xw

φ
θxθ

φx

φ
θxθφx

)(φ
θw
a

i
i = )(ln

)(
)( iyp

a
Ab i

i =+=
φ
θ







 −

==
)(

))((exp),()|(
φ

θxθφxx
a
Ahiyp i

T
i



13

CS 2750 Machine Learning

Multi-way classification

• Softmax model is an accurate model when class- conditional 
densities are represented with densities from the exponential 
family with the same scaling parameter 

• For two classes it reduces to the logistic regression model

x )|0(0 x== yPµ

)|1(1 x−==− kyPkµ
Softmax
network
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Bayesian decision theory
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Confusion matrix

Results of classification are recorded in: 
• Confusion matrix:

– Counts of examples with:
– class label          that are classified with a label

agreement
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Zero-one loss function

• Misclassification error
– Based on the zero- one loss function

• Any misclassified example counts as 1
• Correctly classified example counts as 0

• What is the zero- one loss for the confusion matrix?
agreement
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General loss function

• Error function based on a more general loss function
– Different misclassifications have different weight (loss)
– our choice
– true label
– loss for classification

Example:
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Bayesian decision theory

• More general loss function
– Different misclassifications have different weight (loss)

• Expected loss for the classification choice

– Also called conditional risk
• Decision rule:

– Chooses label (action) according to the input
• The optimal decision rule
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Bayesian decision theory

• The optimal decision rule

How to modify classifiers to handle different loss?
• Discriminative models:

– Directly optimize the parameters according to the new loss 
function 

• Generative models:
– Learn probabilities as before
– Decisions about classes are biased to minimize the 

empirical loss (as seen above)
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Calculating the loss for data

• Confusion matrix:
– Counts of examples with:
– class label          that are classified with a label

• Loss
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