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Binary classification

• Two classes
• Our goal is to learn to classify correctly two types of examples

– Class 0 – labeled as 0, 
– Class 1 – labeled as 1

• We would like to learn
• Zero-one error (loss) function

• Error we would like to minimize:
• First step: we need to devise a model of the function 
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Discriminant functions

• One convenient way to represent classifiers is through
– Discriminant functions

• Works for binary and multi-way classification

• Idea: 
– For every class i = 0,1, …k define a function

mapping
– When the decision on input x should be made choose the 

class with the highest value of

• So what happens with the input space?  Assume a binary case.  
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Discriminant functions
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Discriminant functions
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Discriminant functions
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Discriminant functions

• Define decision boundary. 
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Quadratic decision boundary
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Logistic regression model

• Defines a linear decision boundary
• Discriminant functions:

• where
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Linear decision boundary

• Logistic regression model defines a linear decision boundary
• Why?
• Answer: Compare two discriminant functions.
• Decision boundary:
• For the boundary it must hold: 
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Logistic regression model.  Decision boundary

• LR defines a linear decision boundary
Example: 2 classes (blue and red points)
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Generative approach to classification

Idea: 
1. Represent and learn the distribution
2. Use it to define probabilistic discriminant functions

E.g. 

Typical model
• = Class-conditional distributions (densities)

binary classification:  two class-conditional distributions

• = Priors on classes  - probability of class y
binary classification: Bernoulli distribution
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Generative approach to classification

Example:
• Class-conditional distributions

– multivariate normal distributions

• Priors on classes  (class 0,1)
– Bernoulli distribution
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Learning of parameters of the model

Density estimation in statistics
• We see examples – we do not know the parameters of 

Gaussians (class-conditional densities)

• ML estimate of parameters of a multivariate normal            
for a set of  n examples of  x 
Optimize log-likelihood:

• How about class priors?
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Generative model
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2 Gaussian class-conditional densities

• . 
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Making class decision

Basically we need to design discriminant functions
Two possible choices:
• Likelihood of data – choose the class (Gaussian) that explains 

the input data (x) better (likelihood of the data)

• Posterior of a class – choose the class with better posterior 
probability
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2 Gaussians: Quadratic decision boundary
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2 Gaussians: Quadratic decision boundary
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2 Gaussians: Linear decision boundary
• When covariances are the same 0,),(~ 0 =yN Σµx

1,),(~ 1 =yN Σµx
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2 Gaussians: Linear decision boundary
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2 Gaussians: linear decision boundary
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2 Gaussians: Quadratic decision boundary
• When different covariances 0,),(~ 10 =yN Σµx

1,),(~ 21 =yN Σµx
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2 Gaussians: Quadratic decision boundary
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2 Gaussians: Quadratic decision boundary
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Generative approach to classification

Idea: 
1. Represent and learn the distribution
2. Use it to define probabilistic discriminant functions

E.g. 

Typical model
• = Class-conditional distributions (densities)

binary classification:  two class-conditional distributions

• = Priors on classes  - probability of class y
binary classification: Bernoulli distribution
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Naïve Bayes classifier
• a generative classifier model with an additional simplifying 

assumption:
– All input attributes are conditionally independent of each 

other given the class. So we have:
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Learning of parameters of the model

Much simpler density estimation problems
• We need to learn:

and                        and
• Because of the assumption of the conditional independence we 

need to learn: 
for every variable i:                        and

• If the number of input attributes is large this much easier
• Also, the model gives us a flexibility to represent input 

attributes different  of different forms !!!
• E.g. one attribute can be modeled using the Bernoulli, the 

other as Gaussian density, or as a Poisson distribution

)0|( =yp x )1|( =yp x )( yp

)0|( =yxp i )1|( =yxp i



15

CS 2750 Machine Learning

Making a class decision for the Naïve Bayes

Discriminant functions. 
• Likelihood of data – choose the class that explains the input 

data (x) better (likelihood of the data)

• Posterior of a class – choose the class with better posterior 
probability
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Back to logistic regression
• Two models with linear decision boundaries:

– Logistic regression
– Generative model with 2 Gaussians with the same 

covariance matrices

• Two models are related !!!
– When we have 2 Gaussians with the same covariance 

matrices the probability of y given x has the form of a 
logistic regression model !!!
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When is the logistic regression model correct?

• Members of the exponential family can be often more 
naturally described as 

• Claim: A logistic regression is a correct model when class 
conditional densities are from the same distribution in the 
exponential family and have the same scale factor

• Very powerful result !!!! 
– We can represent posteriors of many distributions with 

the same small network
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Linear units

Logistic regressionLinear regression

dx

∑

1

1x
0w

1w
2w

dw
2x

)(xf

xwx Tf =)( )(),|1()( xwwxx Tgypf ===

xxww ))(( fy−+← α

Gradient update: Gradient update:

The same

xxww ))(( fy−+← α

∑

1

)|1( xyp =

0w

1w
2w

dw

z
=)(xf

1x

dx

2x

∑
=

−+←
n

i
iii fy

1

))(( xxww α ∑
=

−+←
n

i
iii fy

1

))(( xxww α

Online: Online:



17

CS 2750 Machine Learning

Gradient-based learning

• The same simple gradient update rule derived for both the 
linear and logistic regression models

• Where the magic comes from? 
• Under the log-likelihood measure the function models and the 

models for the output selection fit together:
– Linear model + Gaussian noise

– Logistic + Bernoulli
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Generalized linear models (GLIM)
Assumptions:
• The conditional mean (expectation) is:

– Where              is a response function
• Output y is characterized by an exponential family distribution 

with a conditional mean
Examples:

– Linear model + Gaussian noise

– Logistic + Bernoulli
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Generalized linear models

• A canonical response functions          : 
– encoded in the distribution

• Leads to a simple gradient form
• Example:  Bernoulli distribution

– Logistic function matches the Bernoulli
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When does the logistic regression fail?
• Quadratic decision boundary is needed
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When does the logistic regression fail?

• Another example of a non-linear decision boundary
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Non-linear extension of logistic regression
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