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Binary classification

* Two classes Y = {0,1}

* Our goal is to learn to classify correctly two types of examples
— Class 0 — labeled as 0,
— Class 1 —labeled as 1

« We would like to learn f: X —{0,1}

» Zero-one error (loss) function

L f(x,w)# y,

0 f(x.W)=y,

* Error we would like to minimize: £ (Error (X, y))

Error (X, ;) ={

* First step: we need to devise a model of the function
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Discriminant functions

One convenient way to represent classifiers is through
— Discriminant functions
Works for binary and multi-way classification

Idea:
— For every class i = 0,1, ...k define a function g,(x)
mapping X — R
— When the decision on input x should be made choose the
class with the highest value of g;(X)

So what happens with the input space? Assume a binary case.
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Discriminant functions
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Discriminant functions
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Discriminant functions
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Discriminant functions

Define decision boundary.
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Logistic regression model

* Defines a linear decision boundary
* Discriminant functions:

g,(x) = g(w'x) go(x) =1-g(w'x)
« where g(z)=1/(1+e7) -isalogistic function

f(xw) =g, (w'x)=g(w'x)

! w Logistic function

X, \VVJ\> z f S (x,w)
Jo w0
X

Input vector
X

CS 2750 Machine Learning

Linear decision boundary

» Logistic regression model defines a linear decision boundary
* Why?

* Answer: Compare two discriminant functions.

* Decision boundary: g (x)=g,(x)

 For the boundary it must hold:

2 _ o 178D _

log
g,(x) g(w'x)
exp—(W'x)
. T
10gg"—(x) ~ log 1+exp—(W X) = logexp— (WTX) —w'x =0
g,(x) 1

1+exp—(w'x)
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Logistic regression model. Decision boundary

* LR defines a linear decision boundary
Example: 2 classes (blue and red points)
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Generative approach to classification

Idea:
1. Represent and learn the distribution p(X, )
2. Use it to define probabilistic discriminant functions

Eg g, (x)=p(y=0[x) g x)=py=1[x)

Typical model p(x,y)=px[y)p(y)
« p(x|y) = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
p(x|y=0) pr(x|ly=1
« p(¥) =Priors on classes - probability of class y
binary classification: Bernoulli distribution

p(y=0)+p(y=1)=1
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Generative approach to classification

Example:
* Class-conditional distributions
— multivariate normal distributions
Xx~N(p,, X, for y=0
x~N(p,,x,) for y=1
Multivariate normal x ~ N(p,X)

p(x|p,E) = %exp{—l(x Wz (x- u)}
(27)""?|Z| 2

* Priors on classes (class 0,1) Y ~ Bernoulli

— Bernoulli distribution
p(»,0)=0"(1-0)" y {01}
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Learning of parameters of the model

Density estimation in statistics

* We see examples — we do not know the parameters of
Gaussians (class-conditional densities)

pxIE) = e S 2w
(27)? x| 2

* ML estimate of parameters of a multivariate normal N (p,X)
for a set of n examples of x

Optimize log-likelihood:  /(D,p,Z) =log [ p(x, |n,X)

i=1

.1 A R . .
i=—>x, T=—) (x;—p)(x;-p)’
n n -

* How about class priors?
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Generative model
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2 Gaussian class-conditional densities

Class conditional densities
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Making class decision

Basically we need to design discriminant functions
Two possible choices:
* Likelihood of data — choose the class (Gaussian) that explains
the input data (x) better (likelihood of the data)
E(X’ﬂlazl)>3(xlﬂo,zo) — then y=1
g (x) g, (X) else y=0
* Posterior of a class — choose the class with better posterior
probability
p(y=1[x)>p(y=0[x) then y=1
else y=0

p(x|p,Z)ply=1)

=1]x) =
P X 0 E ) p (= 0+ (X Z) 9y = )
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2 Gaussians: Quadratic decision boundary

Contours of class-conditional densities
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2 Gaussians: Quadratic decision boundary
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2 Gaussians: Linear decision boundary
* When covariances are the same  x ~ N(p,,X),y =0
X~ N(MI’Z)J Y =1
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2 Gaussians: Linear decision boundary

Contours of class-conditional densities
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2 Gaussians: linear decision boundary
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2 Gaussians: Quadratic decision boundary
* When different covariances X~N(p,XZ,),y=0
X~N(p,,X,),y=1
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2 Gaussians: Quadratic decision boundary

Contours of class-conditional densities
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2 Gaussians: Quadratic decision boundary

Decision boundary
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Generative approach to classification

Idea:
1. Represent and learn the distribution p(X,y)

2. Use it to define probabilistic discriminant functions
Eg g,(x)=p(y=0[x) g (x)=p(y=1[x)

Typical model p(x,y)=px[y)p(y)
« p(x|y) = Class-conditional distributions (densities)
binary classification: two class-conditional distributions
r(x|y=0) r(x|ly=1
« p(y) =Priors on classes - probability of class y
binary classification: Bernoulli distribution

p(y=0)+ply=DH=1
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Naive Bayes classifier

+ a generative classifier model with an additional simplifying
assumption:

— All input attributes are conditionally independent of each
other given the class. So we have:

(o C p(x,¥) = p(x|y)p(y)
/g\ pxIn=]] p(x )
O i=1
X X, .. X,
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Learning of parameters of the model

Much simpler density estimation problems
* We need to learn:
p(x|y=0) and p(x[y=1) and p(y)

» Because of the assumption of the conditional independence we
need to learn:

for every variable i: p(x; |y =0)and p(x;|y=1)
* If the number of input attributes is large this much easier

» Also, the model gives us a flexibility to represent input
attributes different of different forms !!!

* E.g. one attribute can be modeled using the Bernoulli, the
other as Gaussian density, or as a Poisson distribution
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Making a class decision for the Naive Bayes

Discriminant functions.
* Likelihood of data — choose the class that explains the input
data (x) better (likelihood of the data)
N N
P 10)>T] P(x,10,,) wmy ~ then =1
i1 i-1 else y=0
N
g,(x) go(x)
» Posterior of a class — choose the class with better posterior
probability p(y=1/x)> p(y=0[X) then y=1
else y=0

i=1

(H P, ®1,i)jp(y =1

p(y=1[x)=— N
[H (%0, ])p(y =0) +(H px, | ®2,I-)Jp(y =1)
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Back to logistic regression

* Two models with linear decision boundaries:
— Logistic regression
— Generative model with 2 Gaussians with the same
covariance matrices

x~N(u,,2) for y=0
x~N(u,z) for y=1

 Two models are related !!!
— When we have 2 Gaussians with the same covariance
matrices the probability of y given x has the form of a
logistic regression model !!!

p(y=1x,p,p,,%)=g(w'x)
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When is the logistic regression model correct?

* Members of the exponential family can be often more
naturally described as

£(x10,0) = h(x, @) exp {M}

a(o)

0 - Alocation parameter @ - A scale parameter

* Claim: A logistic regression is a correct model when class
conditional densities are from the same distribution in the
exponential family and have the same scale factor @

* Very powerful result !!!!

— We can represent posteriors of many distributions with
the same small network

CS 2750 Machine Learning

Linear units

Linear regression Logistic regression
f(x)=w'x f(x)=p(y=1]x,w)=g(w'x)
1
= 5 f®=
X W SX) p(y=1|x)
w,
X
. w,
xd xd
Gradient unpdate: Gradient update:
wewta) (v -f(x)x  Thesame  wewiad (- f(x))x,
= m =
Online: yy (—W_Fa(y_f(x))x Online: vy (—W+a(y—f(X))X
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Gradient-based learning

* The same simple gradient update rule derived for both the
linear and logistic regression models

*  Where the magic comes from?

* Under the log-likelihood measure the function models and the
models for the output selection fit together:

— Linear model + Gaussian noise Gaussan noise

y=w'x+e &~N(0,07%)

— Logistic + Bernoulli
Bernoulli trial

f: gv'x) i v

y = Bernoulli(@)

X

X,

0=p(y=1]x)=g(w'x)

Xy
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Generalized linear models (GLIM)

Assumptions:
» The conditional mean (expectation) is:
p=f(w'x)
— Where f(.) isaresponse function

* Output y is characterized by an exponential family distribution
with a conditional mean u

Gaussian noise

Examples:
— Linear model + Gaussian noise
y=w'x+& &~N(0,0%)

— Logistic + Bernoulli .- Bernoul ia

y ~ Bernoulli(9) X %

0=g(w'x)=

WTX

1+ e X,
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Generalized linear models

* A canonical response functions f(.) :
— encoded in the distribution

OTX—A(B)}
a(9)

p(x]0,9)= h(x,q))eXp{

* Leads to a simple gradient form
* Example: Bernoulli distribution

p(x|p)=pu (1-pu)™ = exp{log(l’_u’qu+log(l—y)}
y7; 1
0 =log| —— =
g[l—uj # 1+e™’

— Logistic function matches the Bernoulli

CS 2750 Machine Learning

When does the logistic regression fail?

* Quadratic decision boundary is needed

Decision boundary

3-
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When does the logistic regression fail?

* Another example of a non-linear decision boundary
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Non-linear extension of logistic regression

* use feature (basis) functions to model nonlinearities
* the same trick as used for the linear regression

Linear regression Logistic regression
m

FRO =Wt XWX F(0=g0n + 3 6,050

¢,~ ( x) - an arbitrary function of x
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