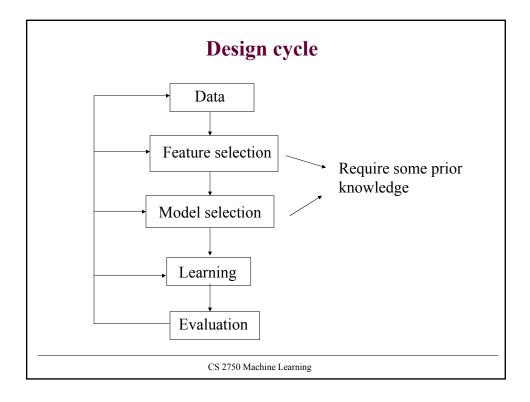
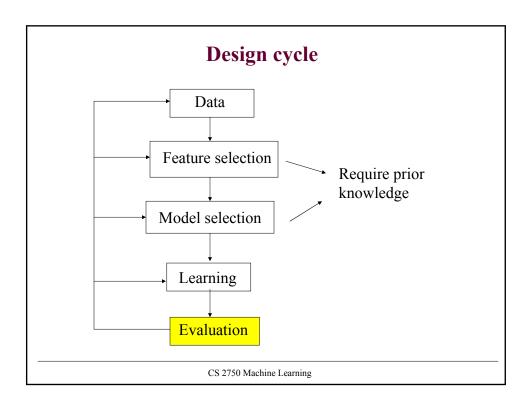
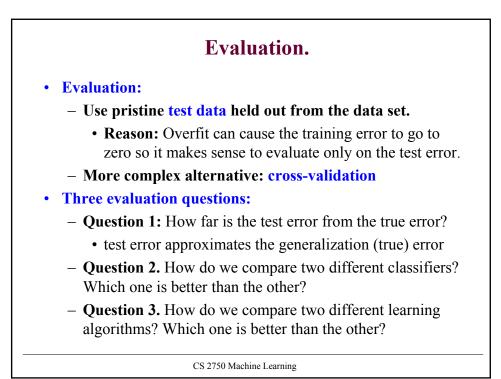
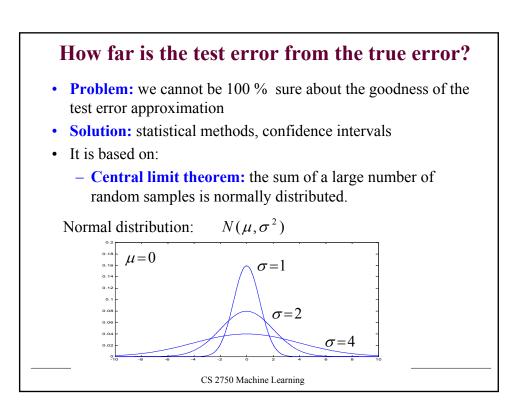
CS 2750 Machine Learning Lecture 4 **Evaluation of predictors and learners** Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square, x4-8845 http://www.cs.pitt.edu/~milos/courses/cs2750/

Administration • Homework 1. due today • Homework 2 is out. Due next week on Wednesday.









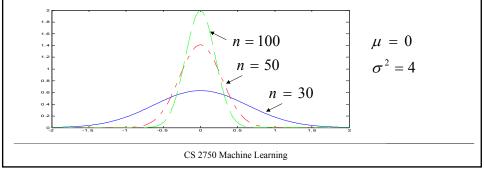
Central limit theorem

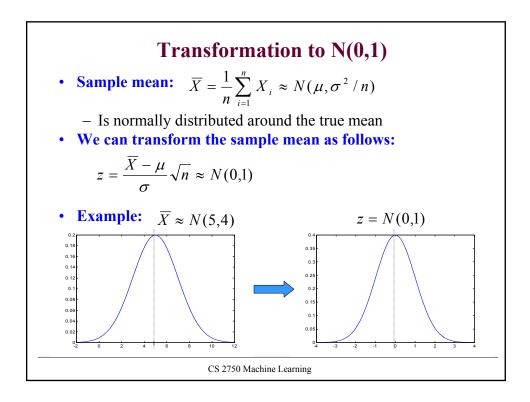
• Central limit theorem:

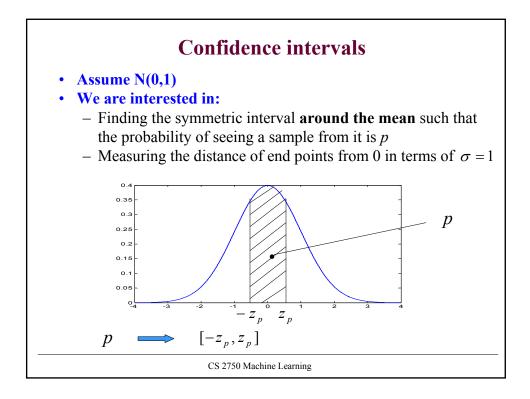
Let random variables $X_1, X_2, \dots X_n$ form a random sample from a distribution with mean μ and variance σ^2 , then if the sample n is large, the distribution

$$\sum_{i=1}^{n} X_{i} \approx N(n\mu, n\sigma^{2}) \quad \text{or} \quad \frac{1}{n} \sum_{i=1}^{n} X_{i} \approx N(\mu, \sigma^{2}/n)$$

Effect of increasing the sample size *n* on the sample mean:









Confidence intervals • **Back to case:** $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n)$ • Probability mass under the normal curve for a symmetric interval around the mean is invariant when interval distances are measured in terms of the standard deviation • For N(0,1) p = 0.95 \Longrightarrow $z_p = 1.96$ • For $\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \approx N(\mu, \sigma^2 / n)$ $z = \frac{\overline{X} - \mu}{\sigma} \sqrt{n} \approx N(0,1)$ $\overline{X} \in [\mu - z_p \frac{\sigma}{\sqrt{n}}, \mu + z_p \frac{\sigma}{\sqrt{n}}]$ p = 0.95 \Longrightarrow $\overline{X} \in [\mu - 1.96(\sigma / \sqrt{n}), \mu + 1.96(\sigma / \sqrt{n})]$ \Longrightarrow $\mu \in [\overline{X} - 1.96(\sigma / \sqrt{n}), \overline{X} + 1.96(\sigma / \sqrt{n})]$ CS 2750 Machine Learning

Confidence interval

- Problem: But typically the variance is not known
- **Solution:** estimate the variance from the sample

$$s_{n} = \sqrt{\frac{\sum_{i=1}^{n} (X_{i} - \overline{X})^{2}}{n-1}}$$

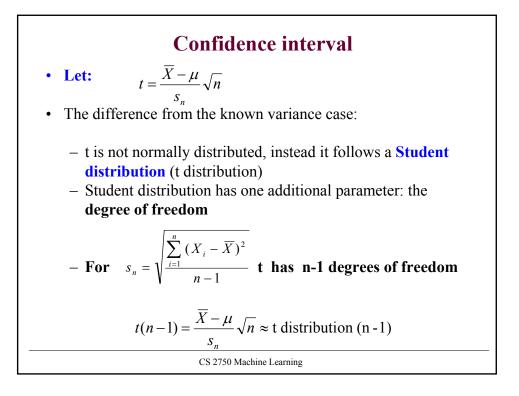
• Assume the sample mean falls into the interval centered at the mean:

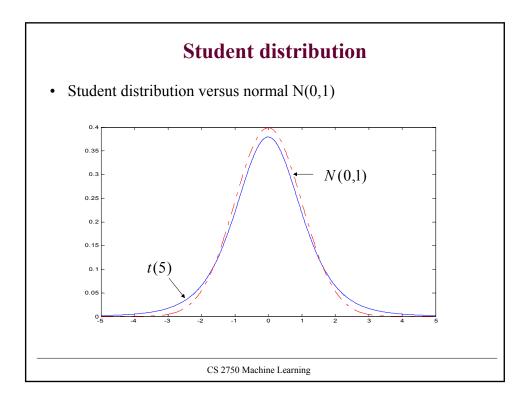
$$\overline{X} \in \left[\mu - t_p \, \frac{s_n}{\sqrt{n}}, \, \mu + t_p \, \frac{s_n}{\sqrt{n}}\right]$$

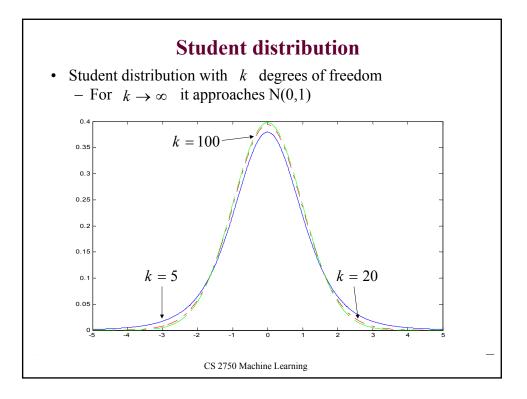
• Or equivalently that the mean falls into the interval centered around the sample mean:

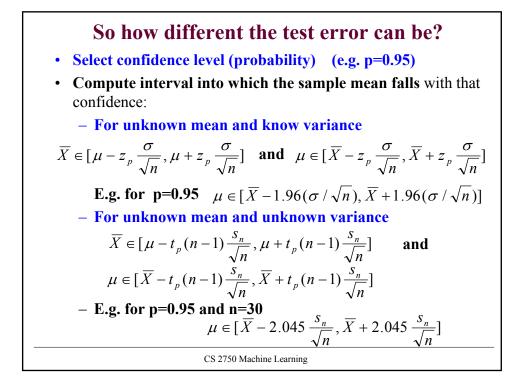
$$\boldsymbol{u} \in \left\lfloor \overline{X} - t_p \, \frac{s_n}{\sqrt{n}}, \, \overline{X} + t_p \, \frac{s_n}{\sqrt{n}} \right\rfloor$$

• This happens with some probability \vec{p} that depends on t_p









Comparison of two predictors

Predictor 1 uses function $f_1(\mathbf{x})$ to predict ysPredictor 2 uses function $f_2(\mathbf{x})$ to predict ys

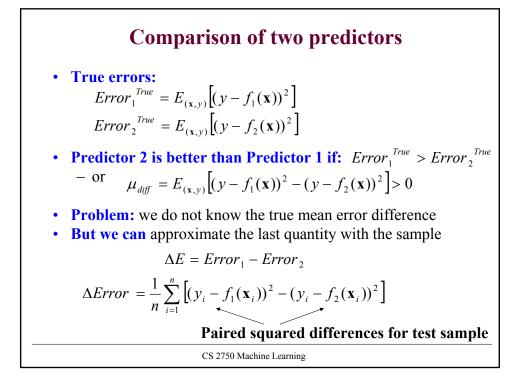
• Test data are used to approximate the true errors

$$Error_{1} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - f_{1}(\mathbf{x}_{i}))^{2}$$

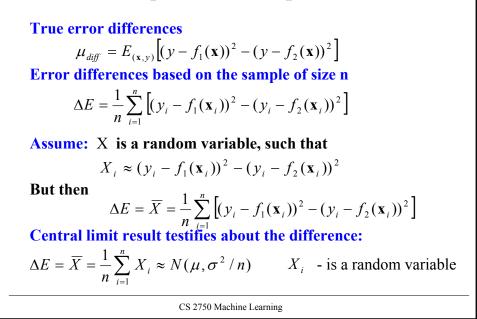
$$Error_{2} = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - f_{2}(\mathbf{x}_{i}))^{2}$$
Test errors

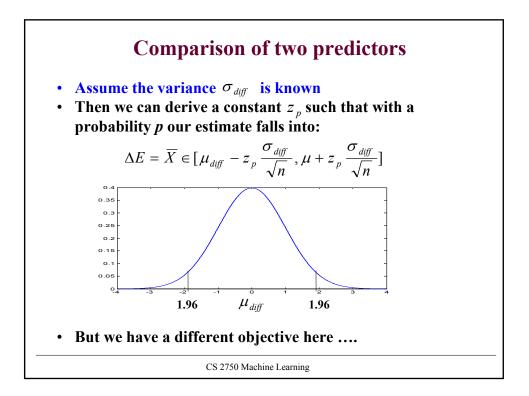
- Assume that: the sample size *n* is sufficiently large
- Assume that we observed : $Error_{1}^{0} > Error_{2}^{0}$ or that $\Delta E^{0} = Error_{1}^{0} - Error_{2}^{0} > 0$
- **Question:** How sure are we that the predictor 2 is better than the predictor 1 in terms of true errors ?

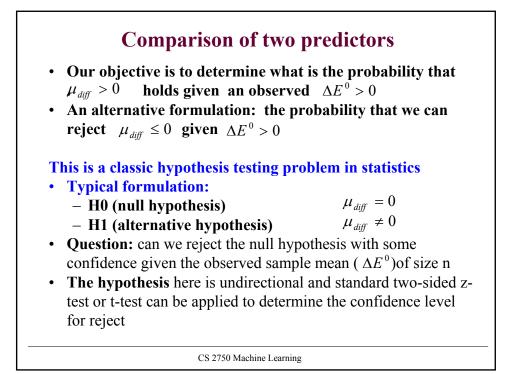
CS 2750 Machine Learning



Comparison of two predictors







Our case is different:	
• H0 (null hypothesis)	$\mu_{diff} \ \leq 0 \ \mu_{diff} \ > 0$
• H1 (alternative hypothesis)	$\mu_{diff} > 0$
• That is, we want to reject the cas score differences is $\mu_{diff} \leq 0$ b confidence level.	
• This is a directional hypothesis	
• Test methods:	
– One-sided z-test (for the kn	own variance case)
- One-sided t-test (for the un	known variance case)

