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Announcement

• Term projects:
– Reports due on Wednesday, April 21 at 12:30pm
– Project presentations: Wednesday, April 21, 12:30-4pm
– Example project reports are on the course web site.
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Decision trees

• Back to the supervised learning 
• An alternative approach to what we have seen so far:

– Partition the input space to regions
– Regress or classify independently in every region
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Decision trees
• The partitioning idea is used in the decision tree model:

– Split the space recursively according to inputs in x
– Regress or classify at the bottom of the tree
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Decision trees

How to construct the decision tree?
• Top-bottom algorithm:

– Finds the best split condition (quantified based on the 
impurity measure)

– Stops when no improvement possible
• Impurity measure:

– Measures how well are the two classes separated 
– Ideally we would like to separate all 0s and 1

• Splits of finite vs. continuous value attributes

Continuous value attributes conditions: 5.03 ≤x
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Impurity measure

Let

• Impurity measure defines how well are the classes separated
• In general the impurity measure should satisfy:

– Largest when data are split evenly for attribute values

– Should be 0 when all data belong to the same class
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Impurity measures

• There are various impurity measures used in the literature
– Entropy based measure (Quinlan, C4.5)

– Gini measure (Breiman, CART)
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Impurity measures

• Gain due to split – expected reduction in the impurity 
measure (entropy example)
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Decision tree learning

• Greedy learning algorithm:
Repeat until no or small improvement in the purity
– Find the attribute with the highest gain
– Add the attribute to the tree and split the set accordingly

• Builds the tree in the top-down fashion
– Gradually expands the leaves of the partially built tree

• The method is greedy
– It looks at a single attribute and gain in each step
– May fail when the combination of attributes is needed to  

improve the purity (parity functions)
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Decision tree learning

• Limitations of greedy methods
Initial state:
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Decision tree learning

• Limitations of greedy methods
• Complete space:
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Decision tree learning

• Limitations of greedy methods
• Complete space:
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Decision tree learning

• Now what happens here if we evaluate this candidate?
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Decision tree learning

• Limitations of greedy methods
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Decision tree learning

• Limitations of greedy methods
The combination of two or more attributes improves the 

impurity
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Decision tree learning
By reducing the impurity measure we can grow very large trees
Problem: Overfitting
• We may split and classify very well the training set, but we may

do worse in terms of  the generalization error 
Solutions to the overfitting problem:
• Solution 1.

– Prune branches of the tree built in the first phase
– Use validation set to test for the overfit

• Solution 2. 
– Test for the overfit in the tree building phase
– Stop building the tree when performance on the validation set 

deteriorates 


