CS 2750 Machine Learning Lecture 19				
	Clustering			
Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square				
	CS 2750 Machine Learning			

A set of pa We want to	tient cas	ses on then	n into the group	os based on similariti
Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

Clustering example

- A set of patient cases
- We want to partition them into the groups based on similarities

Age	Sex	Heart Rate	Blood pressure
55	М	85	125/80
62	М	87	130/85
67	F	80	126/86
65	F	90	130/90
70	М	84	135/85
	Age 55 62 67 65 70	Age Sex 55 M 62 M 67 F 65 F 70 M	AgeSexHeart Rate55M8562M8767F8065F9070M84

How to design the distance metric to quantify similarities?

Distance measures. Assume pure real-valued data-points: 78.5 89.2 19.2 12 34.5 66.3 78.8 23.5 41.4 8.9 33.6 36.7 78.3 90.3 21.4 17.2 30.1 71.6 88.5 12.5 What distance metric to use? Euclidian: works for an arbitrary k-dimensional space $d(a,b) = \sqrt{\sum_{i=1}^{k} (a_i - b_i)^2}$ CS 2750 Machine Learning

Distance measures.

Assume pure real-valued data-points:

12	34.5	78.5	89.2	19.2
23.5	41.4	66.3	78.8	8.9
33.6	36.7	78.3	90.3	21.4
17.2	30.1	71.6	88.5	12.5

What distance metric to use?

Manhattan: works for an arbitrary k-dimensional space

$$d(a,b) = \sum_{i=1}^{k} |a_i - b_i|$$

Etc. ..

ratient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	Μ	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85

Distance measures.

Combination of real-valued and categorical attributes

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	Μ	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	Μ	84	135/85

What distance metric to use?

A weighted sum approach: e.g. a mix of Euclidian and Edit distances for subsets of attributes

	K-means
K-N	Means algorithm:
	Initialize randomly k values of means (centers)
	Repeat two steps until no change in the means:
	 Partition the data according to the current set of means (using the similarity measure)
	 Move the means to the center of the data in the current partition
	Stop when no change in the means
Pro	operties:
•	Minimizes the sum of squared center-point distances for all clusters
•	The algorithm always converges (local optima).
	CS 2750 Machine Learning

Probabilistic (EM-based) algorithms Latent variable models • Examples: Naïve Bayes with hidden class **Mixture of Gaussians** • Partitioning: - the data point belongs to the class with the highest posterior • Advantages: - Good performance on overlapping regions - Robustness to outliers Data attributes can have different types of values Drawbacks: - EM is computationally expensive and can take time to converge Density model should be given in advance CS 2750 Machine Learning

Hierarchical clustering.

Approach:

- Compute dissimilarity matrix for all pairs of points
 - uses standard or other distance measures
- Construct clusters greedily:
 - Agglomerative approach
 - Merge pair of clusters in a bottom-up fashion, starting from singleton clusters
 - Divisive approach:
 - Splits clusters in top-down fashion, starting from one complete cluster
- Stop the greedy construction when some criterion is satisfied
 - E.g. fixed number of clusters

Hierarchical clustering

- Advantage:
 - Smaller computational cost; avoids scanning all possible clusterings

• Disadvantage:

 Greedy choice fixes the order in which clusters are merged; cannot be repaired

Partial solution:

• combine hierarchical clustering with iterative algorithms like k-means