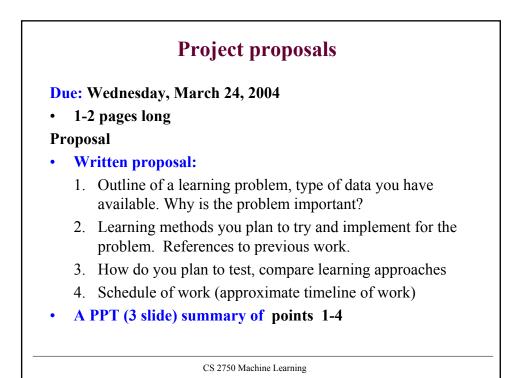
CS 2750 Machine Learning Lecture 18

Density estimation with hidden variables and missing values

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square



Learning probability distribution

Basic learning settings:

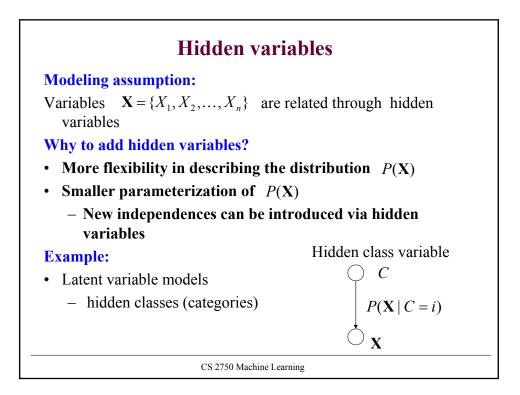
- A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$
- A model of the distribution over variables in *X* with parameters Θ
- **Data** $D = \{D_1, D_2, ..., D_N\}$

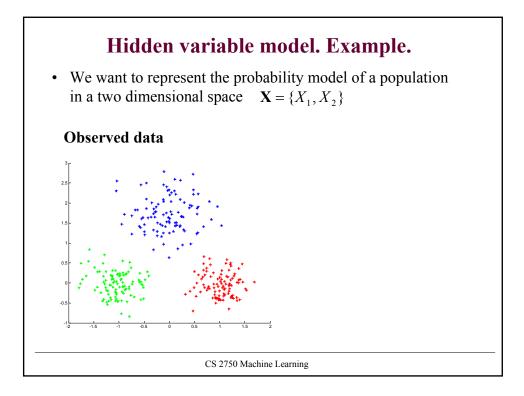
s.t.
$$D_i = (x_1^i, x_2^i, \dots, x_n^i)$$

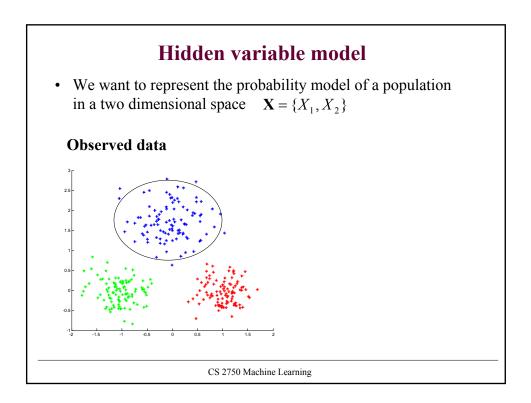
Objective: find parameters $\hat{\Theta}$ that describe the data

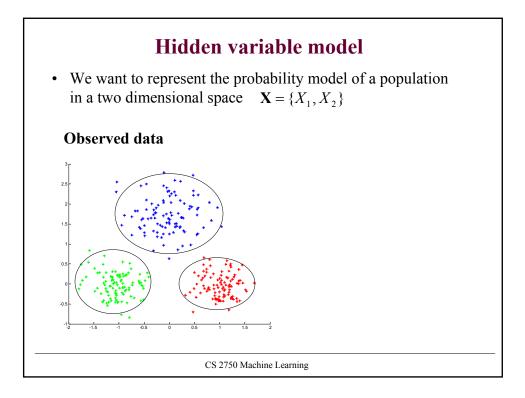
Assumptions considered so far:

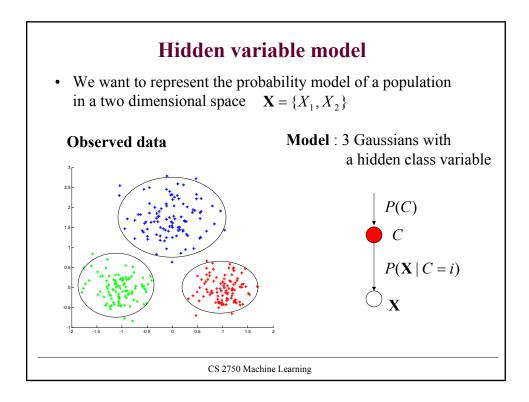
- Known parameterizations
- No hidden variables
- No-missing values

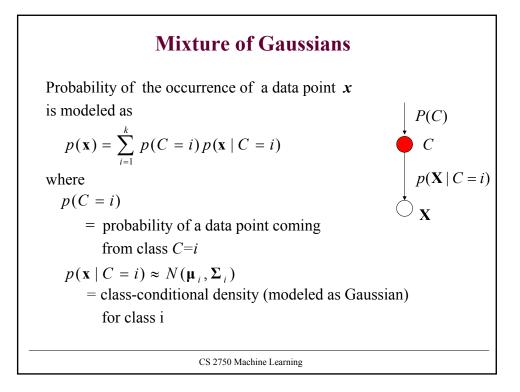


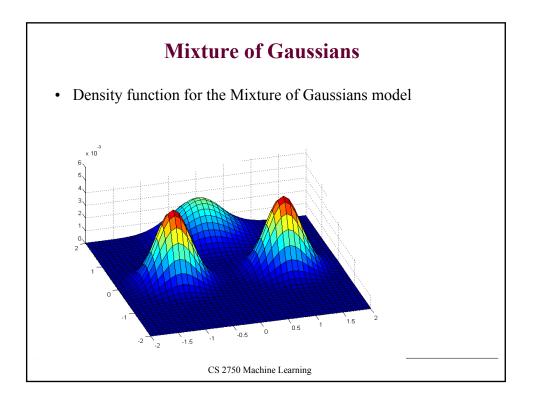


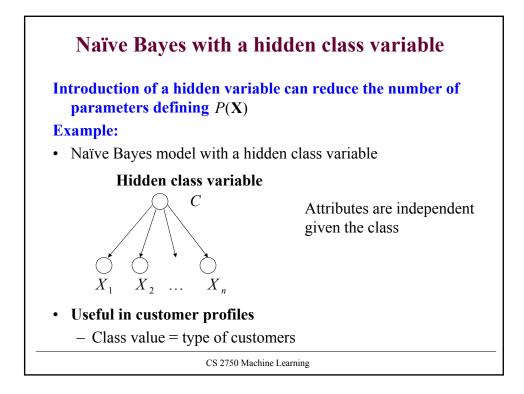




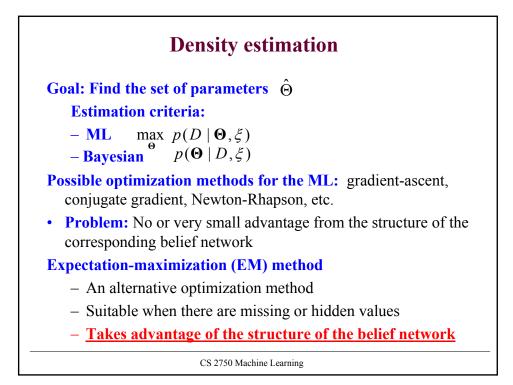


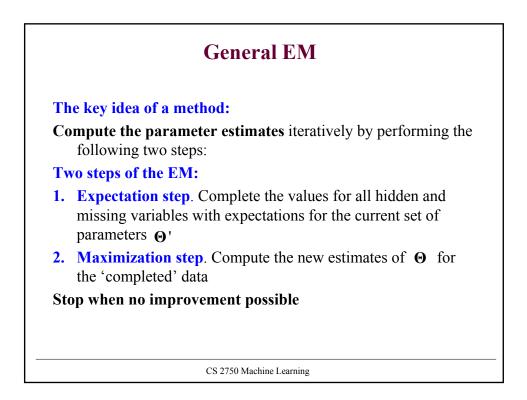






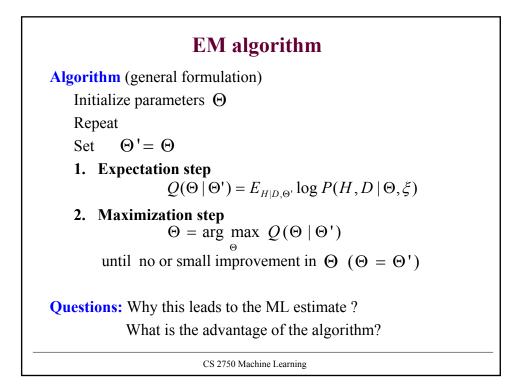
Missing values A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$ $D = \{D_1, D_2, ..., D_N\}$ • Data But some values are missing • $D_i = (x_1^i, x_3^i, \dots x_n^i)$ Missing value of x_2^i $D_{i+1} = (x_3^i, \dots, x_n^i)$ Missing values of x_1^i, x_2^i Etc. **Example:** medical records • We still want to estimate parameters of $P(\mathbf{X})$ CS 2750 Machine Learning

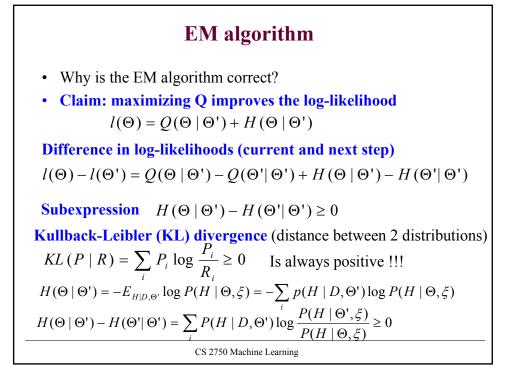


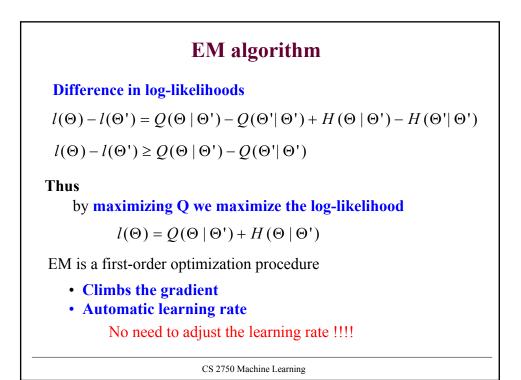


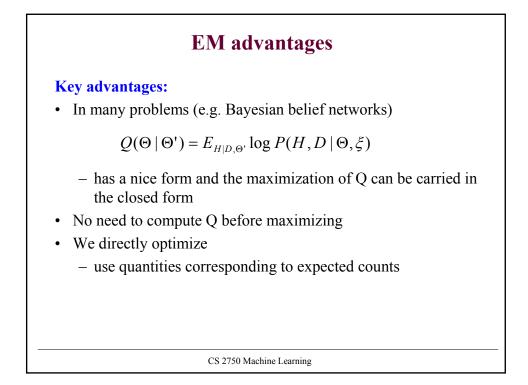
EM

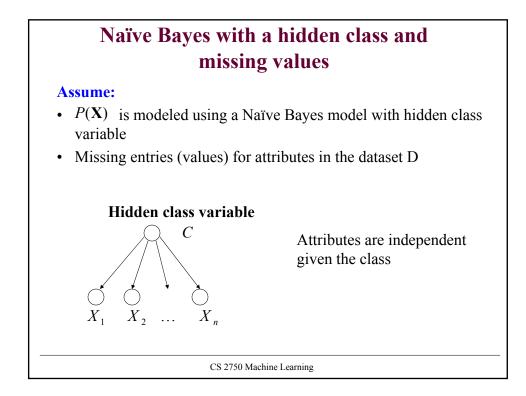
Let H – be a set of all variables with hidden or missing values **Derivation** $P(H, D | \Theta, \xi) = P(H | D, \Theta, \xi)P(D | \Theta, \xi)$ $\log P(H, D | \Theta, \xi) = \log P(H | D, \Theta, \xi) + \log P(D | \Theta, \xi)$ $\log P(D | \Theta, \xi) = \log P(H, D | \Theta, \xi) - \log P(H | D, \Theta, \xi)$ **Log-likelihood of data Average both sides** with $P(H | D, \Theta', \xi)$ for Θ' $E_{H|D,\Theta'} \log P(D | \Theta, \xi) = E_{H|D,\Theta'} \log P(H, D | \Theta, \xi) - E_{H|D,\Theta'} \log P(H | \Theta, \xi)$ $\log P(D | \Theta, \xi) = Q(\Theta | \Theta') + H(\Theta | \Theta')$ **Log-likelihood of data** Starten Learning

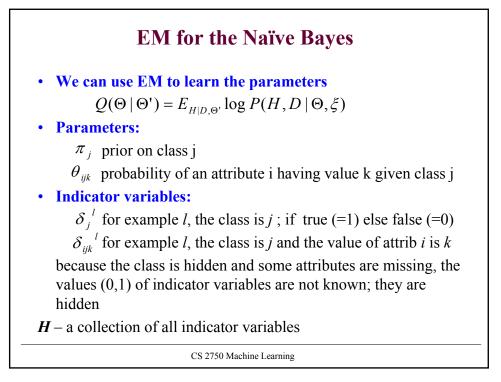


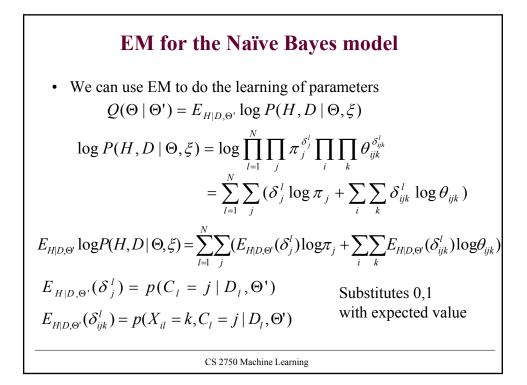












EM for Naïve Bayes model

• Computing derivatives of Q for parameters and setting it to 0 we get: \widetilde{N}_i $\theta_{...} = \frac{\widetilde{N}_{ijk}}{\widetilde{N}_{ijk}}$

$$\pi_{j} = \frac{J}{N} \qquad \qquad \sum_{k=1}^{N} \widetilde{N}_{ijk}$$

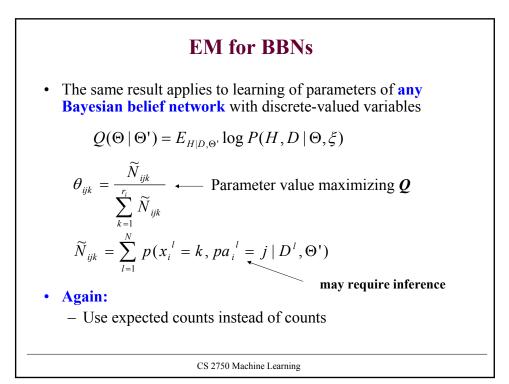
$$\widetilde{N}_{j} = \sum_{l=1}^{N} E_{H|D,\Theta'}(\delta_{j}^{l}) = \sum_{l=1}^{N} p(C_{l} = j \mid D_{l}, \Theta')$$

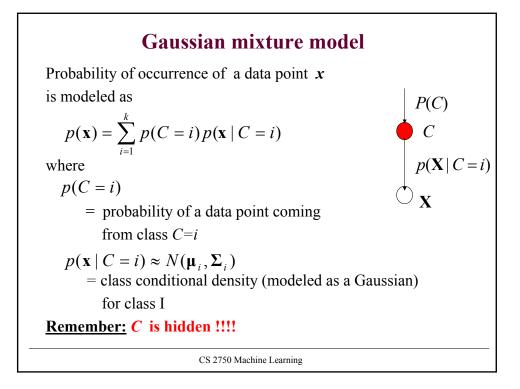
$$\widetilde{N}_{ijk} = \sum_{l=1}^{N} E_{H|D,\Theta'}(\delta_{ijk}^{l}) = \sum_{l=1}^{N} p(X_{il} = k, C_{l} = j \mid D_{l}, \Theta')$$

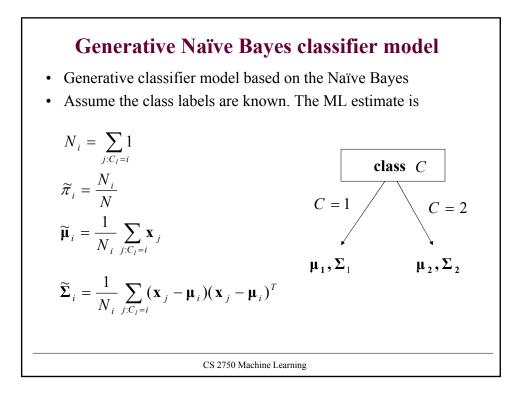
• Important:

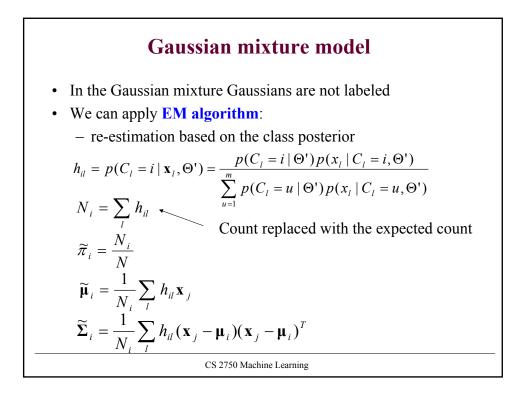
- Use expected counts instead of counts !!!

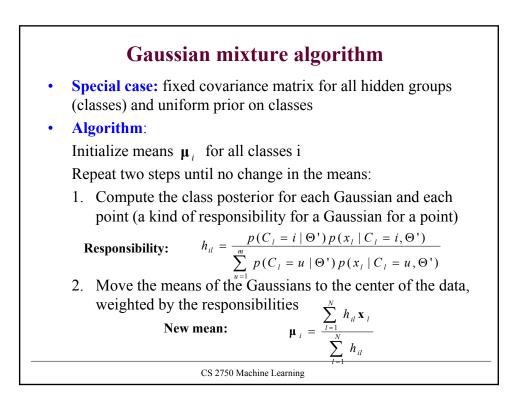
• Re-estimate the parameters using expected counts

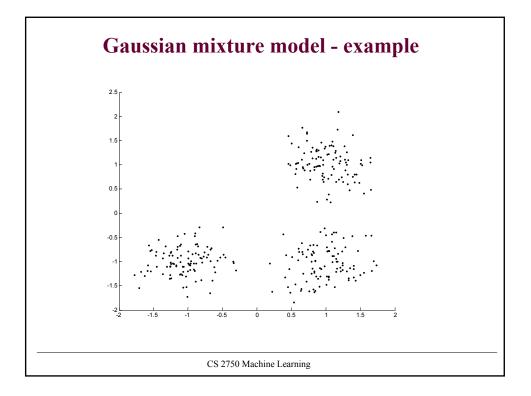


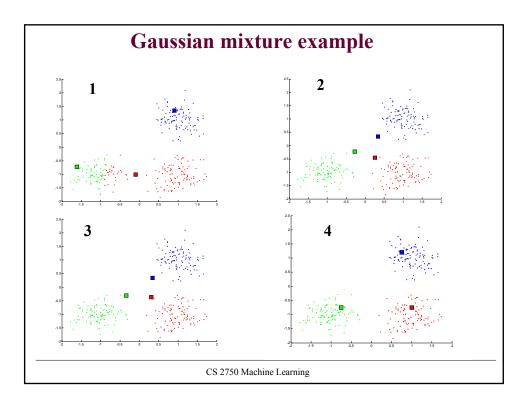




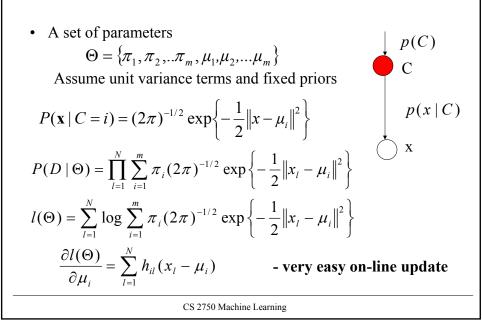


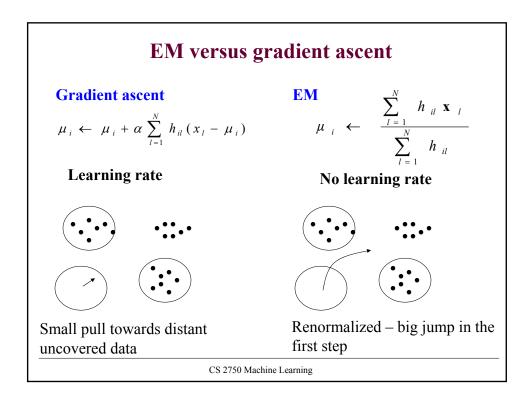






Gaussian mixture model. Gradient ascent.





K-means approximation to EM

Expectation-Maximization:

• posterior measures the responsibility of a Gaussian for every point

$$h_{il} = \frac{p(C_{l} = i | \Theta') p(x_{l} | C_{l} = i, \Theta')}{\sum_{u=1}^{m} p(C_{l} = u | \Theta') p(x_{l} | C_{l} = u, \Theta')}$$

K- Means

• Only the closest Gaussian is made responsible for a point

 $h_{il} = 1$ If i is the closest Gaussian

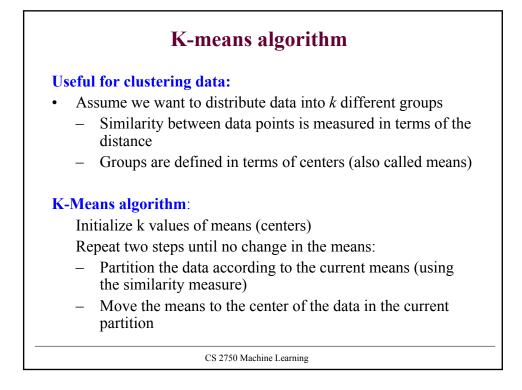
 $h_{il} = 0$ Otherwise

Re-estimation of means

$$\boldsymbol{\mu}_{i} = \frac{\sum_{l=1}^{N} \boldsymbol{h}_{il} \mathbf{x}_{l}}{\sum_{l=1}^{N} \boldsymbol{h}_{il}}$$

Ν

• Results in moving the means of Gaussians to the center of the data points it covered in the previous step



K-means algorithm

• Properties

- converges to centers minimizing the sum of center-point distances (local optima)
- The result may be sensitive to the initial means' values

• Advantages:

- Simplicity
- Generality can work for an arbitrary distance measure

• Drawbacks:

- Can perform poorly on overlapping regions
- Lack of robustness to outliers (outliers are not covered)