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CS 2750 Machine Learning
Lecture 17

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Density estimation with hidden 
variables  and missing values

CS 2750 Machine Learning

Administration

Midterm:  Wednesday, March 17, 2004
• In class
• Closed book
• Material covered by Spring break, excluding learning of 

the BBN structures
• Last year midterm is on the web

No new homework
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Project proposals

Due: Wednesday, March 24, 2004
• 1-2 pages long
Proposal 
• Written proposal:

1. Outline of a learning problem, type of data you have 
available. Why is the problem important?

2. Learning methods you plan to try and implement for the 
problem.  References to previous work.

3. How do you plan to test, compare learning approaches
4. Schedule of work (approximate timeline of work)

• A PPT (3 slide) summary of points  1-4

CS 2750 Machine Learning

Learning the structure of the BBN
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Model selection

• BBN has two components:
– Structure of the network (models conditional 

independences)
– A set of parameters (conditional child-parent 

distributions)
We already know how to learn the parameters for the fixed 

structure
But how to learn the structure of the BBN?
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CS 2750 Machine Learning

Learning the structure
Criteria we can choose to score the structure S
• Marginal likelihood

• Maximum posterior probability
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Learning of BBNs
• Notation:

– i ranges over all possible variables i=1,..,n
– j=1,..,q ranges over all possible parent combinations
– k=1,..,r ranges over all possible variable values
– - parameters of the BBN

ijΘ is a vector of         representing parameters of the conditional ijkΘ
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CS 2750 Machine Learning

Marginal likelihood

• Integrate over all possible parameter settings

• Using the assumption of parameter and sample independence

• We can use log-likelihood score instead
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Score is decomposable along variables !!!
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• From the iid assumption:

• Let ri = number of values that attribute xi can take
qi= number of possible parent combinations
Nijk= number of cases in D where xi has value k 
and parents with values j.
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Computing the marginal likelihood

CS 2750 Machine Learning

• From parameter independence

• Priors for  
– is a vector of parameters;
– we use a Dirichlet distribution with parameters α

to represent it
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Computing the marginal likelihood
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• Combine things together:
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Computing the marginal likelihood

CS 2750 Machine Learning

Learning the structure

• Likelihood of data for the BBN (structure + parameters)

measures the goodness of fit of the BBN to data

• Marginal likelihood (for the structure only)

• Does not measure only a goodness of fit. It is: 
– different for structures of different complexity
– Incorporates preferences towards simpler structures, 

implements Occam’s razor !!!!
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Occam’s Razor

• Why there is a preference towards simpler structures ?

Interpretation: in more complex structures there are more ways 
how parameters can be set badly
– The numerator: count of good assignments
– The denominator: count of all assignments
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CS 2750 Machine Learning

Approximations of probabilistic scores

Approximations of the marginal likelihood and posterior scores 
• Information based measures

– Akaike criterion
– Bayesian information criterion (BIC)
– Minimum description length (MDL)

• Reflect the tradeoff between the fit to data and preference 
towards simpler structures

Example: Akaike criterion.      
Maximize:

Maximize:

compl(S)),,|(log)( −Θ= ξMLSDPSscore
Bayesian information criterion (BIC)

logN compl(S)
2
1),,|(log)( −Θ= ξMLSDPSscore
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Optimizing the structure

Finding the best structure is a combinatorial optimization
problem

• A good feature: the score is decomposable along variables:

Algorithm idea: Search the space of structures using local 
changes (additions and deletions of a link) 

Advantage:
– we do not have to compute the whole score from scratch
– Recompute the partial score for the affected variable 
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CS 2750 Machine Learning

Optimizing the structure. Algorithms

• Greedy search
– Start from structure with no links
– Add a link that yields the best score improvement

• Metropolis algorithm (with simulated annealing)
– Local additions and deletions
– Avoids being trapped in “local” optimal 
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Density estimation with hidden 
variables  and missing values

CS 2750 Machine Learning

Learning probability distribution

Basic learning settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters 
• Data

s.t.
Objective: find parameters       that describe the data 
Assumptions considered so far:

– Known parameterizations
– No hidden variables 
– No-missing values
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Hidden variables
Modeling assumption: 
Variables                                       are related through  hidden 

variables 
Why to add hidden variables?
• More flexibility in describing the distribution
• Smaller parameterization of 

– New independences can be introduced via hidden 
variables

Example: 
• Latent variable models

– hidden classes (categories)

},,,{ 21 nXXX K=X

)(XP

Hidden class variable

)(XP

X

)|( iCP =X

C
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Hidden variable model. Example.
• We want to represent the probability model of a population    

in a two dimensional space
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Hidden variable model
• We want to represent the probability model of a population    

in a two dimensional space

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

},{ 21 XX=X

Observed data

CS 2750 Machine Learning

Hidden variable model
• We want to represent the probability model of a population    

in a two dimensional space
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Hidden variable model
• We want to represent the probability model of a population    

in a two dimensional space
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Model : 3 Gaussians with
a hidden class variable

)(CP

Observed data

CS 2750 Machine Learning

Mixture of Gaussians

Probability of  the occurrence of  a data point  x  
is modeled as

where

=  probability of a data point coming 
from class C=i 

= class-conditional density (modeled as Gaussian)
for class i
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Mixture of Gaussians

• Density function for the Mixture of Gaussians model

CS 2750 Machine Learning

Naïve Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of 
parameters defining           

Example: 
• Naïve Bayes model with a hidden class variable

• Useful in customer profiles
– Class value = type of customers

)(XP

1X 2X nX…

Hidden class variable

Attributes are independent
given the class

C
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Missing values

A set of random variables 
• Data
• But some values are missing

• Example: medical records
• We still want to estimate parameters of 
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Density estimation

Goal: Find the set of parameters
Estimation criteria:
– ML

Possible optimization methods for the ML: gradient-ascent, 
conjugate gradient, Newton-Rhapson, etc.

• Problem: No or very small advantage from the structure of the 
corresponding belief network

Expectation-maximization (EM) method
– An alternative optimization method
– Suitable when there are missing or hidden values
– Takes advantage of the structure of the belief network

),|(max ξΘ
Θ
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