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&  Evaluation framework
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Generative approach to classification

Idea: 
1. Represent and learn the distribution
2. Use it to define probabilistic discriminant functions

E.g. 

Typical model
• = Class-conditional distributions (densities)

binary classification:  two class- conditional distributions

• = Priors on classes  - probability of class y
binary classification: Bernoulli distribution
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Naïve Bayes classifier
• a generative classifier model with an additional simplifying 

assumption:
– All input attributes are conditionally independent of each 

other given the class. So we have:
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Learning of parameters of the model

Much simpler density estimation problems
• We need to learn:

and                        and
• Because of the assumption of the conditional independence we 

need to learn: 
for every variable i:                        and

• If the number of input attributes is large this much easier
• Also, the model gives us a flexibility to represent input 

attributes different  of different forms !!!
• E.g. one attribute can be modeled using the Bernoulli, the 

other as Gaussian density, or as a Poisson distribution
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Making a class decision for the Naïve Bayes

Discriminant functions. 
• Likelihood of data – choose the class that explains the input 

data (x) better (likelihood of the data)

• Posterior of a class – choose the class with better posterior 
probability
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Experimental evaluation 

Dataset: a set of samples
Split the dataset to: Training and testing data
• Learn on the Training data
• Test on the Testing data
• Test errors give an honest assesment of the error for future 

cases (recall the overfit issue)
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Prevent the train/test split bias

If we use only one train/test split we can be lucky or unlucky
A much better (less biased) option is to use multiple train/test

splits and average the test errors obtained on these splits
How to do the splits ?
• Random subsampling: choose the test and train set randomly 

k times
• Cross-fold validation: a more systematic approach

– Split data to k equal partitions
– Create a train data using k- 1 partitions, test data on the 

remaining partition
– Gives us k different train test splits 

CS 2750 Machine Learning

Evaluation

For any data set we used to test the model we can build a 
confusion matrix: 
– Counts of examples with:
– class label          that are classified with a label
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Evaluation

For any data set we used to test the model we can build a 
confusion matrix: 

Error: ?
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Evaluation for the binary classification

For any data set we used to test the model we can build a 
confusion matrix: 
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Additional statistics

• Sensitivity

• Specificity

• Positive predictive value

• Negative predictive value
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Binary classification. Additional quantities.

• Confusion matrix

Row and column quantities:
– Sensitivity (SENS)
– Specificity (SPEC)
– Positive predictive value (PPV)
– Negative predictive value (NPV)
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Receiver operating characteristic

ROC 
• shows the discriminability between the two classes under 

different decision biases (types of errors we make matter)
• ROC curve is created by plotting:
• the true positive rate against false positive rates
• or sensitivity against (1-specificity)

CS 2750 Machine Learning

Binary decisions: accuracy. 

• Probabilities:
– True positive (hit)
– False positive (false alarm)
– True negative (correct rejection)
– False negative (a miss)
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Decision threshold

• Movement of x* changes the probabilities:
– True positive (hit)
– False positive (false alarm)
– True negative (correct rejection)
– False negative (a miss)
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Receiver Operating Characteristic (ROC)
• ROC curve plots :

vs
for different x*
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ROC curve
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Bayesian decision theory

• Assume we want to incorporate our bias about the learning 
into the learning process

• Assume a multiway classification problem and more 
general confusion matrix
– Counts of examples with:
– class label          that are classified with a label
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Zero-one loss function

• Misclassification error
– Based on the zero- one loss function

• Any misclassified example counts as 1
• Correctly classified example counts as 0

• What is the zero- one loss for the confusion matrix?
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General loss function

• Error function based on a more general loss function
– Different misclassifications have different weight (loss)
– our choice
– true label
– loss for classification

Example:
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Bayesian decision theory

• More general loss function
– Different misclassifications have different weight (loss)

• Expected loss for choice (action) 

– Also called conditional risk
• Decision rule:

– Chooses label (action) according to the input
• Overall expected loss for the decision rule 
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Bayesian decision theory

• The optimal decision rule

How to modify classifiers to handle different loss?
• Discriminative models:

– Directly optimize the parameters according to the new loss 
function 

• Generative models:
– Learn probabilities as before
– Decisions about classes are biased to minimize the 

empirical loss (as seen above)
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