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Linearly separable classes

There is a hyperplane that separates training instances with no
error

Hyperplane: t
wix+w,=0
)
Class (+1) " ®
] ®
wix+w,>0 u
|
Class (-1)
wix+w, <0
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Algorithms for linearly separable set
* Separating hyperplane wix+w,=0
>0.57?

* We can use gradient methods for sigmoidal switching
functions and learn the weights

* Recall that we learn the linear decision boundary
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Algorithms for linearly separable set

+ Separating hyperplane wix+w,=0
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Algorithms for linearly separable sets

* Perceptron algorithm:

Simple iterative procedure for modifying the weights of the
linear model

Loop through examples ( x, y) in the dataset D
1. Compute j=w'x
2. If y#9=-1 then W « w' +x
3. If y#V=+1 then w’ « w’ —x
Until all examples are classified correctly

Properties:
guaranteed convergence
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Algorithms for linearly separable sets

* Linear program solution:
— Find weights that satisfy the following constraints:

WTXZ. +w, >0  Foralli, suchthat y, =+1

wal. +w, <0 Foralli,suchthat y, =-1

Property: if there is a hyperplane separating the examples,
the linear program finds the solution

Other methods:
Fisher linear discriminant

CS 2750 Machine Learning

Optimal separating hyperplane

* There are multiple hyperplanes that separate the data points
— Which one to choose?
* Maximum margin choice: the maximum distance of d, +d_

— where d _ is the shortest distance of a positive example
from the hyperplane (similarly d_ for negative examples)

CS 2750 Machine Learning




Maximum margin hyperplane

* For the maximum margin hyperplane only examples on the
margin matter (only these affect the distances)

* These are called support vectors
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Finding maximum margin hyperplanes

+ Assume that examples in the training set are (X;, ;) such
that y, € {+1,-1}

* Assume that all data satisfy:

wix, +w,>1  for y; =+l

wix, +w, <-1 for y;i=-1

* The inequalities can be combined as:
y,(Ww'x, +w,)=1>0 for all i
» Equalities define two hyperplanes:

T T
WX, +w, =1 WX, +w,=-1
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Finding the maximum margin hyperplane

* Geometrical margin: p,, , (x,y) = y(wix+ wo)/”w”
— measures the distance of a point x from the hyperplane

W - normal to the hyperplane |||| - Euclidean norm
w For points satisfying:
Y, (WX, +w,)=1=0
® 1
. e o ®  The distance is H
w
= o o °
o B o ° Width of the margin:
2
. d,+d ="
0 [wl
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Maximum margin hyperplane

* We want to maximize d, +d_ = 2
[wl

* We do it by minimizing
||w||2 /2=w'w/2
w,w, - variables
— But we also need to enforce the constraints on points:

[y, (v x+w) -1]2 0
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Maximum margin hyperplane

* Solution: Incorporate constraints into the optimization

* Optimization problem (Lagrangian)

J(W,w,,a) = ||w||2 /2 - Zn: ai[yi(wa +w,) —1]
i=1
a, 20 -Lagrange multipliers

* Minimize with regard to w,w, (primal variables)
* Maximize with regard to a  (dual variables)

Lagrange multipliers enforce the satisfaction of constraints

If [yl.(waJr wo)—1]> 0 = a,—>0
Else = a,>0  Active constraint
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Max margin hyperplane solution

 Set derivatives to 0 (Kuhn-Tucker conditions)
Vi J(W,wi,a)=w— z a,y.X;, = 0

i=1

oJ(w,w,,a) -
_—_— a. .=0
o, Z:, e

* Now we need to solve for Lagrange parameters (Wolfe dual)

n 1 n . .
J(a) = Zai _Ezalajyiyj(xirxj) <4=m maximize
i=1

i,j=1

Subject to constraints
a, >0 for all i, and Z ay; =0
i=1

* Quadratic optimization problem: solution ¢, for all i
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Maximum hyperplane solution

* The resulting parameter vector w can be expressed as:

W=D ayx, @, is the solution of the dual problem
i=1

* The parameter w, is obtained through Karush-Kuhn-Tucker
conditions

a.[y,(Wx, + wy)—1]=0

Solution properties

* ¢,=0 forall points that are not on the margin

« W isalinear combination of support vectors only
* The decision boundary:

Wix+w, =D @,y (x, x)+w, =0
ieSV
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Support vector machines

* The decision boundary:
A ~ T
wix+ w, = Z a,y.(x; x)+w,
ieSV
* The decision:

JAj = sign {Z diyi(xiTX) + WO}
ieSV
Note:

* Decision on a new x requires to compute the inner product
between the examples (X x)

* Similarly, optimization depends on (x [Tx)
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Extension to a linearly non-separable case

» Idea: Allow some flexibility on crossing the separating
hyperplane
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Extension to the linearly non-separable case

» Relax constraints with variables E>0

wix, +w,>1-¢& for v, =+l

wix, +w, <-1+¢&, for y,=-1

* Error occurs if &; =1, z &: is the upper bound on the
number of errors =

+ Introduce a penalty for the errors
2 n
minimize ”W” /2+ CZ S
i=1
Subject to constraints

C — set by a user, larger C leads to a larger penalty for an error
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Extension to linearly non-separable case

» Lagrange multiplier form (primal problem)

n

Jwowg.a) =W 12+ CY 6= oy (wx e w) -1+ - g
i=1 i=1

* Dual form after w,w, are exi;ressed (&, s cancel out)
J(a)= ,Z:' a, — %i$1aiajyiyj(x"TXj)
Subjectto: 0 < ¢, ,s C foralli, and Zn: a,y,=0
Solution: w = Zn: ayXx, -
The difference frogthe separable case: 0<a, <C

The parameter W, is obtained through KKT conditions
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Support vector machines

* The decision boundary:
A ~ T
wix+ w, = Z a,y. (X, xX)+w,
ieSV
* The decision:

JAj = sign {Z diyi(xiTX) + WO}
ieSV
Note:

* Decision on a new x requires to compute the inner product
between the examples (x,”x)

* Similarly, optimization depends on (X,.Tx )
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Nonlinear case

. . T
The linear case requires to compute (X, X)

The non-linear case can be handled by using a set of features.
Essentially we map input vectors to (larger) feature vectors

X = ¢(x)
It is possible to use SVM formalism on feature vectors

o(x)" o(x')
Kernel function

K(x,x")=o(x) ¢(x)

Crucial idea: If we choose the kernel function wisely we can
compute linear separation in the feature space implicitly such
that we keep working in the original input space !!!!
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Kernel function example

Assume x =[x,,x,]" and a feature mapping that maps the input
into a quadratic feature set

X — ox)=[x],x], \/Exlxz,\/le, \/Exz 177
Kernel function for the feature space:
K(x',x)=9(x") @(x)
= x]x T+ xS +2x,x,x", X, +2x,x" +2x,x', +1
= (x,x"|+x,x',+1)°
= (1+ (x"x")’
The computation of the linear separation in the higher dimensional
space is performed implicitly in the original input space
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Kernel function example

Linear separator
in the feature space

Non-linear separator
in the input space
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Kernel functions

e Linear kernel

K(x,x')=x"x'
* Polynomial kernel
K(x,x') = [1 + XTX'] ¢
* Radial basis kernel

K(x,x") =exp {— %”x - x'||2}
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