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Outline

Outline:
• Linearly separable classes. Algorithms.
• Support vector machines
• Maximum margin hyperplane.
• Support vectors.
• Support vector machines.

• Extensions to the non-separable case.
• Kernel functions.
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Linearly separable classes

There is a hyperplane that separates training instances with no 
error

00 =+ wT xw

Hyperplane:

Class  (+1)

00 >+ wT xw

Class  (-1)

00 <+ wT xw
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Algorithms for linearly separable set

• Separating hyperplane

• We can use gradient methods for sigmoidal switching 
functions and learn the weights

• Recall that we learn the linear decision boundary

00 =+ wT xw
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Algorithms for linearly separable set

• Separating hyperplane 00 =+ wT xw
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Algorithms for linearly separable sets

• Perceptron algorithm:
Simple iterative procedure for modifying the weights of the 

linear model

Loop through examples ( x , y)  in the dataset D
1. Compute 
2. If                            then
3. If                            then 

Until all examples are classified correctly

Properties:
guaranteed convergence

xw Ty =ˆ
1ˆ −=≠ yy xww +← TT

1ˆ +=≠ yy xww −← TT
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Algorithms for linearly separable sets

• Linear program solution:
– Find weights that satisfy the following constraints:

Property: if there is a hyperplane separating the examples, 
the linear program finds the solution

Other methods:
Fisher linear discriminant

00 ≥+ wi
T xw For all i, such that 1+=iy

00 ≤+ wi
T xw For all i, such that 1−=iy
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Optimal separating hyperplane

• There are multiple hyperplanes that separate the data points
– Which one to choose?  

• Maximum margin choice: the maximum distance of               
– where       is the shortest distance of a positive example 

from the hyperplane (similarly       for negative examples)
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Maximum margin hyperplane

• For the maximum margin hyperplane only examples on the 
margin matter (only these affect the distances)

• These are called support vectors
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Finding maximum margin hyperplanes

• Assume that examples in the training set are                 such 
that  

• Assume that all data satisfy:

• The inequalities can be combined as:

• Equalities define two hyperplanes:

10 −≤+ wi
T xw

10 ≥+ wi
T xw
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Finding the maximum margin hyperplane

• Geometrical margin:
– measures the distance of a point x from the hyperplane
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w - normal to the hyperplane .. - Euclidean norm
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For  points satisfying: 
01)( 0 =−+ wy i

T
i xw

The distance is

Width of the margin:
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Maximum margin hyperplane

• We want to maximize

• We do it by minimizing

– But we also need to enforce the constraints on points:

w
2

=+ −+ dd
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0, ww - variables



7

CS 2750 Machine Learning

Maximum margin hyperplane

• Solution: Incorporate constraints into the optimization
• Optimization problem (Lagrangian)

• Minimize with regard to               (primal variables)
• Maximize with regard to         (dual variables) 

[ ]1)(2/),,( 0
1

2
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wywJ T
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n

i
i xwww αα

0, ww

0≥iα - Lagrange multipliers

Lagrange multipliers enforce the satisfaction of constraints

[ ] 01)( 0 >−+ wy T
i xwIf 0→iα

Else 0>iα Active constraint

α
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Max margin hyperplane solution
• Set derivatives to 0 (Kuhn-Tucker conditions)

• Now we need to solve for Lagrange parameters (Wolfe dual)

• Quadratic optimization problem: solution        for all i 
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Maximum hyperplane solution

• The resulting parameter vector        can be expressed as:

• The parameter         is obtained through Karush-Kuhn-Tucker 
conditions 

Solution properties
• for all points that are not on the margin
• is a linear combination of support vectors only
• The decision boundary:
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Support vector machines

• The decision boundary:

• The decision:

Note:
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, optimization depends on 
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Extension to a linearly non-separable case

• Idea: Allow some flexibility on crossing the separating 
hyperplane
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Extension to the linearly non-separable case

• Relax constraints with variables

• Error occurs  if             ,             is the upper bound on the 
number of errors 

• Introduce a penalty for the errors

ii
T w ξ+−≤+ 10xw
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C – set by a user, larger C leads to a larger penalty for an error
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The parameter         is obtained through KKT conditions 

Extension to linearly non-separable case

• Lagrange multiplier form (primal problem)

• Dual form after              are expressed (     s cancel out)  
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Support vector machines

• The decision boundary:

• The decision:

Note:
• Decision on a new x requires to compute  the inner product 

between the examples
• Similarly, optimization depends on 
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Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

• It is possible to use SVM formalism on feature vectors

• Kernel function

• Crucial idea: If we choose the kernel function wisely we can 
compute linear separation in the feature space implicitly such 
that we keep working in the original input space !!!!

)( xx T
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Kernel function example

Linear separator
in the feature space

Non-linear separator
in the input space
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Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel
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