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Classification with linear models
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Generative approach to classification

Idea: 
1. Represent and learn the distribution
2. Use it to define probabilistic discriminant functions

E.g. 

Typical model
• = Class-conditional distributions (densities)

binary classification:  two class-conditional distributions

• = Priors on classes  - probability of class y
binary classification: Bernoulli distribution
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Generative approach to classification

Example:
• Class-conditional distributions

– multivariate normal distributions

• Priors on classes  (class 0,1)
– Bernoulli distribution
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2 Gaussian class-conditional densities
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Learning of parameters of the model

Density estimation problem
• We see examples & we do not know the parameters of 

Gaussians (class-conditional densities)

• ML estimate of parameters of a multivariate normal            
for a set of  n examples of  x 
Optimize log-likelihood:

• How to learn class priors                                     ?





 −−−= − )()(

2
1exp

)2(
1),|( 1

2/12/
µxΣµx

Σ
Σµx T

d
p

π

∑
=

=
n

i
in 1

1ˆ xµ T
n

in
)ˆ)(ˆ(1ˆ

1
µxµxΣ ii −−= ∑

=

)|(log),,(
1

Σ,µxΣµ ∏
=

=
n

i
ipDl

),( ΣµN

)1(),0( == ypyp

CS 2750 Machine Learning

Making class decision

Basically we need to design discriminant functions
Two possible choices:
1. Likelihood of data – choose the class (Gaussian) that 

explains the input data (x) better (likelihood of the data)

2.   Posterior of a class – choose the class with better posterior 
probability
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2 Gaussians: Linear decision boundary
• When covariances are the same 0,),(~ 0 =yN Σµx

1,),(~ 1 =yN Σµx
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2 Gaussians: Linear decision boundary
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2 Gaussians: linear decision boundary
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2 Gaussians: Quadratic decision boundary
• When different covariances 0,),(~ 10 =yN Σµx

1,),(~ 21 =yN Σµx
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2 Gaussians: Quadratic decision boundary
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2 Gaussians: Quadratic decision boundary
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Back to the logistic regression
• Two models with linear decision boundaries:

– Logistic regression
– Generative model with 2 Gaussians with the same 

covariance matrices

• Two models are related !!! 
– When we have 2 Gaussians with the same covariance 

matrices the discriminant function has the form of a 
logistic regression model !!!
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When is the logistic regression model correct?

• Members of an exponential family can be often more 
naturally described as 

• Claim: A logistic regression is a correct model when class 
conditional densities are from the same distribution in the 
exponential family and have the same scale factor

• Very powerful result !!!! 
– We can represent posteriors of many distributions with 

the same small network
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Linear units

Logistic regressionLinear regression
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Gradient-based learning

• The same simple gradient update rule derived for both the 
linear and logistic regression models

• Where the magic comes from? 
• Under the log-likelihood measure the function models and the 

models for the output selection fit together:
– Linear model + Gaussian noise

– Logistic + Bernoulli
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Generalized linear models (GLIM)
Assumptions:
• The conditional mean (expectation) is:

– Where              is a response function
• Output y is characterized by an exponential family distribution 

with a conditional mean
Examples:

– Linear model + Gaussian noise

– Logistic + Bernoulli
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Generalized linear models

• A canonical response functions          : 
– encoded in the distribution

• Leads to a simple gradient form
• Example:  Bernoulli distribution

– Logistic function matches the Bernoulli
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When does the logistic regression fail?
• Quadratic decision boundary is needed
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When does the logistic regression fail?

• Another example of a non-linear decision boundary
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Non-linear extension of logistic regression
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