CS 2750 Machine Learning Lecture 3

Evaluation of predictors

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845
http://www.cs.pitt.edu/~milos/courses/cs2750/

Administration

- Homework 1.
- Due next week on Wednesday.
- Report
- Programs in Matlab

Evaluation.

- Evaluation:
- Use pristine test data held out from the data set.
- Reason: Overfit can cause the training error to go to zero so it makes sense to evaluate only on the test error.
- Alternative: cross-validation
- Three evaluation questions:
- Question 1: How far is the test error from the true error?
- test error approximates the generalization (true) error
- Question 2. How do we compare two different predictors? Which one is better than the other?
- Question 3. How do we compare two different learning algorithms? Which one is better than the other?

How far is the test error from the true error?

- Problem: we cannot be 100% sure about the goodness of the test error approximation
- Solution: statistical methods, confidence intervals
- It is based on:
- Central limit theorem: the sum of a large number of random samples is normally distributed.

Normal distribution: $\quad N\left(\mu, \sigma^{2}\right)$

Central limit theorem

- Central limit theorem:

Let random variables $X_{1}, X_{2}, \cdots X_{n}$ form a random sample from a distribution with mean μ and variance σ^{2}, then if the sample n is large, the distribution

$$
\sum_{i=1}^{n} X_{i} \approx N\left(n \mu, n \sigma^{2}\right) \quad \text { or } \quad \frac{1}{n} \sum_{i=1}^{n} X_{i} \approx N\left(\mu, \sigma^{2} / n\right)
$$

Effect of increasing the sample size n on the sample mean:

Transformation to $\mathbf{N}(\mathbf{0}, 1)$

- Sample mean: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \approx N\left(\mu, \sigma^{2} / n\right)$
- Is normally distributed around the true mean
- We can transform the sample mean as follows:

$$
z=\frac{\bar{X}-\mu}{\sigma} \sqrt{n} \approx N(0,1)
$$

- Example: $\bar{X} \approx N(5,4)$

$$
z=N(0,1)
$$

(20.0

Confidence intervals

- Assume $\mathbf{N}(0,1)$
- We are interested in:
- Finding the symmetric interval around the mean such that the probability of seeing a sample from it is p
- Measuring the distance of end points from 0 in terms of $\sigma=1$

CS 2750 Machine Learning

Confidence intervals

- Assume $\mathbf{N}(\mathbf{0}, \mathbf{1}): p \longrightarrow\left[-z_{p}, z_{p}\right]$
- Values $\left(p, z_{p}\right)$ are tabulated
- Example: $p=0.95 \Longrightarrow z_{p}=1.96$

- With confidence 0.95 we see values in interval [-1.96, 1.96]

Confidence intervals

- Back to case: $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \approx N\left(\mu, \sigma^{2} / n\right)$
- Probability mass under the normal curve for a symmetric interval around the mean is invariant when interval distances are measured in terms of the standard deviation
- For $N(0,1)$

$$
p=0.95 \quad \Longrightarrow \quad z_{p}=1.96
$$

- For $\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \approx N\left(\mu, \sigma^{2} / n\right)$

$$
z=\frac{\bar{X}-\mu}{\sigma} \sqrt{n} \approx N(0,1) \quad \bar{X} \in\left[\mu-z_{p} \frac{\sigma}{\sqrt{n}}, \mu+z_{p} \frac{\sigma}{\sqrt{n}}\right]
$$

$$
p=0.95 \Longrightarrow \bar{X} \in[\mu-1.96(\sigma / \sqrt{n}), \mu+1.96(\sigma / \sqrt{n})]
$$

$$
\Longrightarrow \mu \in[\bar{X}-1.96(\sigma / \sqrt{n}), \bar{X}+1.96(\sigma / \sqrt{n})]
$$

Confidence interval

- Problem: But typically the variance is not known
- Solution: estimate variance from the sample

$$
s_{n}=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}
$$

- Assume the sample mean falls into the interval centered at the mean:

$$
\bar{X} \in\left[\mu-t_{p} \frac{s_{n}}{\sqrt{n}}, \mu+t_{p} \frac{s_{n}}{\sqrt{n}}\right]
$$

- Or equivalently that the mean falls into the interval centered around the sample mean:

$$
\mu \in\left[\bar{X}-t_{p} \frac{s_{n}}{\sqrt{n}}, \bar{X}+t_{p} \frac{s_{n}}{\sqrt{n}}\right]
$$

- This happens with some probability p that depends on t_{p}

Confidence interval

- Let: $t=\frac{\bar{X}-\mu}{s_{n}} \sqrt{n}$
- The difference from the known variance case:
- t is not normally distributed, instead it follows a Student distribution (t distribution)
- Student distribution has one additional parameter: the degree of freedom
- For $s_{n}=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}}$ thas n-1 degrees of freedom

$$
t(n-1)=\frac{\bar{X}-\mu}{s_{n}} \sqrt{n} \approx \mathrm{t} \text { distribution (n-1) }
$$

Student distribution

- Student distribution versus normal $N(0,1)$

Student distribution

- Student distribution with k degrees of freedom
- For $k \rightarrow \infty$ it approaches $\mathrm{N}(0,1)$

So how different the test error can be?

- Select confidence level (probability) (e.g. p=0.95)
- Compute interval into which the sample mean falls with that confidence:
- For unknown mean and know variance

$$
\bar{X} \in\left[\mu-z_{p} \frac{\sigma}{\sqrt{n}}, \mu+z_{p} \frac{\sigma}{\sqrt{n}}\right] \text { and } \mu \in\left[\bar{X}-z_{p} \frac{\sigma}{\sqrt{n}}, \bar{X}+z_{p} \frac{\sigma}{\sqrt{n}}\right]
$$

E.g. for $\mathbf{p}=0.95 \mu \in[\bar{X}-1.96(\sigma / \sqrt{n}), \bar{X}+1.96(\sigma / \sqrt{n})]$

- For unknown mean and unknown variance

$$
\begin{aligned}
& \bar{X} \in\left[\mu-t_{p}(n-1) \frac{s_{n}}{\sqrt{n}}, \mu+t_{p}(n-1) \frac{s_{n}}{\sqrt{n}}\right] \quad \text { and } \\
& \mu \in\left[\bar{X}-t_{p}(n-1) \frac{s_{n}}{\sqrt{n}}, \bar{X}+t_{p}(n-1) \frac{s_{n}}{\sqrt{n}}\right]
\end{aligned}
$$

- E.g. for $\mathbf{p}=\mathbf{0 . 9 5}$ and $\mathbf{n}=\mathbf{3 0}$

$$
\mu \in\left[\bar{X}-2.045 \frac{s_{n}}{\sqrt{n}}, \bar{X}+2.045 \frac{s_{n}}{\sqrt{n}}\right]
$$

Comparison of two predictors

Predictor 1 uses function $f_{1}(\mathbf{x})$ to predict ys
Predictor 2 uses function $f_{2}(\mathbf{x})$ to predict ys

- Test data are used to approximate the true errors

$$
\begin{aligned}
& \text { Error }_{1}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{1}\left(\mathbf{x}_{i}\right)\right)^{2} \\
& \text { Error }_{2}=\frac{1}{n} \sum_{i=1}^{n}\left(y_{i}-f_{2}\left(\mathbf{x}_{i}\right)\right)^{2}
\end{aligned} \text { Test errors }
$$

- Assume that: the sample size n is sufficiently large
- Assume that we observed : Error ${ }_{1}{ }^{0}$ Error ${ }_{2}^{0}$ or that

$$
\Delta E^{0}=\text { Error }_{1}^{0}-\text { Error }_{2}^{0}>0
$$

- Question: How sure are we that the predictor 2 is better than the predictor 1 in terms of true errors?

Comparison of two predictors

- True errors:

$$
\begin{aligned}
& \text { Error }_{1}^{\text {True }}=E_{(\mathbf{x}, y)}\left[\left(y-f_{1}(\mathbf{x})\right)^{2}\right] \\
& \text { Error }_{2}{ }^{\text {True }}=E_{(\mathbf{x}, y)}\left[\left(y-f_{2}(\mathbf{x})\right)^{2}\right]
\end{aligned}
$$

- Predictor 2 is better than Predictor 1 if: Error $_{1}{ }^{\text {True }}>$ Error $_{2}{ }^{\text {True }}$
- or

$$
\mu_{d i f f}=E_{(\mathbf{x}, y)}\left[\left(y-f_{1}(\mathbf{x})\right)^{2}-\left(y-f_{2}(\mathbf{x})\right)^{2}\right]>0
$$

- Problem: we do not know the true mean error difference
- But we can approximate the last quantity with the sample

$$
\begin{gathered}
\Delta E=\text { Error }_{1}-\text { Error }_{2} \\
\Delta \text { Error }=\frac{1}{n} \sum_{i=1}^{n}[(y_{i}-\underbrace{\left.\left.f_{1}\left(\mathbf{x}_{i}\right)\right)^{2}-\left(y_{i}-f_{2}\left(\mathbf{x}_{i}\right)\right)^{2}\right]}_{\text {Paired squared differences for test sample }}
\end{gathered}
$$

Comparison of two predictors

True error differences

$$
\mu_{\text {diff }}=E_{(\mathbf{x}, y)}\left[\left(y-f_{1}(\mathbf{x})\right)^{2}-\left(y-f_{2}(\mathbf{x})\right)^{2}\right]
$$

Error differences based on the sample of size n

$$
\Delta E=\frac{1}{n} \sum_{i=1}^{n}\left[\left(y_{i}-f_{1}\left(\mathbf{x}_{i}\right)\right)^{2}-\left(y_{i}-f_{2}\left(\mathbf{x}_{i}\right)\right)^{2}\right]
$$

Assume: X is a random variable, such that

$$
X_{i} \approx\left(y_{i}-f_{1}\left(\mathbf{x}_{i}\right)\right)^{2}-\left(y_{i}-f_{2}\left(\mathbf{x}_{i}\right)\right)^{2}
$$

But then

$$
\Delta E=\bar{X}=\frac{1}{n} \sum_{i=1}^{n}\left[\left(y_{i}-f_{1}\left(\mathbf{x}_{i}\right)\right)^{2}-\left(y_{i}-f_{2}\left(\mathbf{x}_{i}\right)\right)^{2}\right]
$$

Central limit result:
$\Delta E=\bar{X}=\frac{1}{n} \sum_{i=1}^{n} X_{i} \approx N\left(\mu, \sigma^{2} / n\right) \quad X_{i} \quad$ - is a random variable

Comparison of two predictors

- Assume the variance $\sigma_{\text {diff }}$ is known
- Then we can derive a constant z_{p} such that with a probability p our estimate falls into:

$$
\Delta E=\bar{X} \in\left[\mu_{d i f f}-z_{p} \frac{\sigma_{\text {diff }}}{\sqrt{n}}, \mu+z_{p} \frac{\sigma_{\text {diff }}}{\sqrt{n}}\right]
$$

- But we have a different objective here

Comparison of two predictors

- Our objective is to determine what is the probability that $\mu_{\text {diff }}>0$ holds given an observed $\Delta E^{0}>0$
- An alternative formulation: the probability that we can reject $\mu_{\text {diff }} \leq 0$ given $\Delta E^{0}>0$

This is a classic hypothesis testing problem in statistics

- Typical formulation:
- H0 (null hypothesis)

$$
\begin{aligned}
& \mu_{\text {diff }}=0 \\
& \mu_{\text {diff }} \neq 0
\end{aligned}
$$

- H1 (alternative hypothesis)
- Question: can we reject the null hypothesis with some confidence given the observed sample mean (ΔE^{0}) of size n
- The hypothesis here are undirectional and standard two-sided z-test or t-test can be applied to determine the confidence level for reject

Comparison of two predictors

Our case is different:

- H0 (null hypothesis)

$$
\begin{aligned}
& \mu_{\text {diff }} \leq 0 \\
& \mu_{\text {diff }}>0
\end{aligned}
$$

- H1 (alternative hypothesis)
- That is, we want to reject the case when the true mean of the score differences is $\mu_{\text {diff }} \leq 0$ based on $\Delta E^{0}>0$ with some confidence level.
- This is a directional hypothesis
- Test methods:
- One-sided z-test (for the known variance case)
- One-sided t-test (for the unknown variance case)

Comparison of two predictors

- Support for an alternative hypothesis

$$
P\left(\mu_{d i f f}>0\right)=P\left(\Delta E<\mu_{d i f f}+\Delta E^{0}\right)
$$

- From the central limit: $P\left(\Delta E<\mu_{\text {diff }}+z_{p}^{1} \frac{\sigma_{\text {diff }}}{\sqrt{n}}\right)=p^{1}$

- Computation: $\Delta E^{0}=z_{p}^{1} \frac{\sigma_{\text {diff }}}{\sqrt{n}} \Rightarrow z_{p}^{1}=\Delta E^{0} \frac{\sqrt{n}}{\sigma_{\text {diff }}} \Rightarrow p^{1}$

Example

- Example: Δ Error ${ }^{0}=0.1,\left(\sigma_{\text {diff }} / \sqrt{n}\right)=0.061$

$$
P\left(\mu_{\text {diff }}>0\right)=?
$$

- Then:

$$
\Delta \text { Error }^{0}=z_{p}^{1} \frac{\sigma_{\text {diff }}}{\sqrt{n}} \Longrightarrow z_{p}^{1}=\Delta \text { Error }^{0} \frac{\sqrt{n}}{\sigma_{\text {diff }}} \approx 1.64
$$

- Distance of $\mathbf{1 . 6 4}$ standard deviations corresponds to one sided \boldsymbol{p} value of $\mathbf{0 . 9 5}$

$$
P\left(\mu_{\text {diff }}>0\right)=0.95
$$

Comparison of two predictors

- Case: unknown standard deviation $\sigma_{\text {diff }}$
- Solution: use the estimate of the standard deviation
$s_{\text {diff }}^{n}=\sqrt{\frac{\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2}}{n-1}} \quad$ - Estimate of the standard deviation
$t(n-1)=\frac{\bar{X}-\mu_{d i f f}}{s_{d i f f}^{n}} \sqrt{n} \approx \mathrm{t}$ distribution
- Compute the probability of a one sided interval:
$P\left(\bar{X}<\mu_{\text {diff }}+t_{p}^{1}(n-1) \frac{s_{\text {diff }}^{n}}{\sqrt{n}}\right)=p^{1}$
Δ Error $^{0}=t_{p}^{1}(n-1) \frac{s_{\text {diff }}^{n}}{\sqrt{n}} \Longrightarrow t_{p}^{1}(n-1)=\Delta$ Error $^{0} \frac{\sqrt{n}}{s_{\text {diff }}^{n}} \Longrightarrow p^{1}$

Comparison of two algorithms

Comparison of two learning algorithms L1 \& L2 can be a much harder task, especially when data are small.

- Problem: Learning can be performed on many different training sets
- One training set may not fit well one algorithm, but on average it can perform better.
- Optimal evaluation settings:
- draw a sequence of k independent training and testing sets.
- Evaluate \& compare methods based on average of errors for every train-test cycle
- Practical evaluation settings:
- we do not have the luxury of independent samples
- use surrogate sampling with dependencies: cross-validation, re-sampling

