
1

CS 2750 Machine Learning

CS 2750  Machine Learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

Lecture 3

Evaluation of predictors

CS 2750 Machine Learning

Administration

• Homework 1. 
– Due next week on Wednesday.
– Report
– Programs in Matlab
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Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior 
knowledge

CS 2750 Machine Learning

• Evaluation:
– Use pristine test data held out from the data set. 

• Reason: Overfit can cause the training error to go to 
zero so it makes sense to evaluate only on the test error. 

– Alternative: cross-validation
• Three evaluation questions:

– Question 1: How far is the test error from the true error?
• test error approximates the generalization (true) error 

– Question 2. How do we compare two different predictors? 
Which one is better than the other?

– Question 3. How do we compare two different learning 
algorithms? Which one is better than the other? 

Evaluation. 
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• Problem: we cannot be 100 %  sure about the goodness of the 
test error approximation

• Solution: statistical methods, confidence intervals
• It is based on: 

– Central limit theorem: the sum of a large number of 
random samples is normally distributed. 

How far is the test error from the true error?
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• Central limit theorem:
Let random variables                         form a random sample 
from a distribution with mean        and variance       ,  then if 
the sample n is large, the distribution

Effect of increasing the sample size n on the sample mean:

Central limit theorem
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• Sample mean:

– Is normally distributed around the true mean
• We can transform the sample mean as follows:

• Example: 

Transformation to N(0,1) 
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• Assume N(0,1) 
• We are interested in:

– Finding the symmetric interval around the mean such that 
the probability of seeing a sample from it is p

– Measuring the distance of end points from 0 in terms of

Confidence intervals 
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• Assume N(0,1): 
• Values                  are  tabulated

• Example:

• With confidence 0.95 we see values in interval  

Confidence intervals 
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• Back to case: 

• Probability mass under the normal curve for a symmetric 
interval around the mean is invariant when interval distances 
are measured in terms of the standard deviation

• For 

• For 

Confidence intervals
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• Problem: But typically the variance is not known
• Solution: estimate variance from the sample

• Assume the sample mean falls into the interval centered at 
the mean:

• Or equivalently that the mean falls into the interval 
centered around the sample mean:

• This happens with some probability p that depends on

Confidence interval 
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• Let:

• The difference from the known variance case:  

– t is not normally distributed, instead it follows a Student 
distribution (t distribution)

– Student distribution has one additional parameter: the 
degree of freedom

– For                                     t  has  n-1 degrees of freedom  

Confidence interval 
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Student distribution 

• Student distribution versus normal N(0,1)
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Student distribution 
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• Select confidence level (probability)    (e.g. p=0.95)
• Compute interval into which the sample mean falls with that 

confidence:
– For unknown mean and know variance

E.g. for  p=0.95
– For unknown mean and unknown variance

– E.g. for p=0.95 and n=30

So how different the test error can be?
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Predictor 1 uses function             to predict ys
Predictor 2 uses function             to predict ys
• Test data are used to approximate the true errors

• Assume that: the sample size n is sufficiently large
• Assume that we observed :

or that
• Question: How sure are we that the predictor 2 is better than 

the predictor 1 in terms of true errors ?

Comparison of two predictors 
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• True errors:

• Predictor 2 is better than Predictor 1 if:
– or

• Problem: we do not know the true mean error difference
• But we can approximate the last quantity with the sample

Comparison of two predictors 
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True error differences  

Error differences based on the sample of size n  

Assume:  X is a random variable, such that 

But then

Central limit result:

Comparison of two predictors 
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• Assume the variance           is known
• Then we can derive a constant      such that with a 

probability p our estimate falls into:

• But we have a different objective here ….

Comparison of two predictors 
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• Our objective is to determine what is the probability that      
.                  holds given  an observed

• An alternative formulation:  the probability that we can 
reject                   given

This is a classic hypothesis testing problem in statistics
• Typical formulation: 

– H0 (null hypothesis)
– H1 (alternative hypothesis)

• Question: can we reject the null hypothesis with some 
confidence given the observed sample mean (        )of size n

• The hypothesis here are undirectional and standard two-sided 
z-test or t-test can be applied to determine the confidence level 
for reject

Comparison of two predictors 
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Our case is different:
• H0 (null hypothesis)
• H1 (alternative hypothesis)

• That is, we want to reject the case when the true mean of the 
score differences  is                  based on                 with some 
confidence level.

• This is a directional hypothesis 

• Test methods: 
– One-sided z-test (for the known variance case)
– One-sided t-test   (for the unknown variance case)

Comparison of two predictors 
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• Support for an alternative hypothesis

• From the central limit:

• Computation:  

Comparison of two predictors 
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• Example:

• Then:

• Distance of  1.64 standard deviations corresponds to one 
sided p value of  0.95

Example
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• Case: unknown standard deviation
• Solution: use the estimate of the standard deviation

• Compute the probability of a one sided interval: 

Comparison of two predictors

diffσ

ondistributit)1( ≈
−

=− n
s

X
nt n

diff

diffµ
1

)(
1

2

−

−
=
∑

=

n

XX
s

n

i
i

n
diff

- Estimate of the standard deviation

11 ))1(( p
n

s
ntXP

n
diff

pdiff =−+< µ

n
s

ntError
n
diff

p )1(10 −=∆ 1pn
diff

p s
nErrornt 01 )1( ∆=−



13

CS 2750 Machine Learning

Comparison of two algorithms
Comparison of two learning algorithms L1 & L2 can be a much 

harder task, especially when data are small. 
• Problem: Learning can be performed on many different training 

sets
– One training set may not fit well one algorithm, but on 

average it can perform better.
• Optimal evaluation settings:

– draw a sequence of k independent training and testing sets. 
– Evaluate & compare methods based on average of errors for 

every train-test cycle
• Practical evaluation settings:

– we do not have the luxury of independent samples
– use surrogate sampling with dependencies: cross-validation, 

re-sampling  


