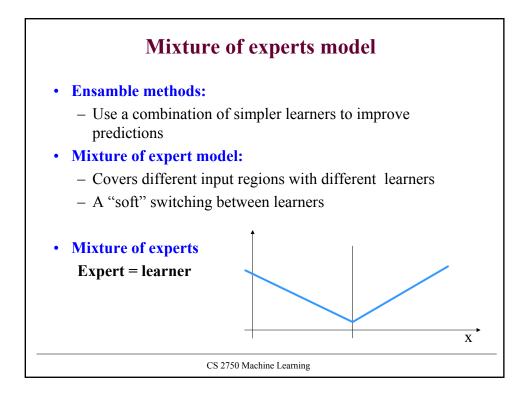
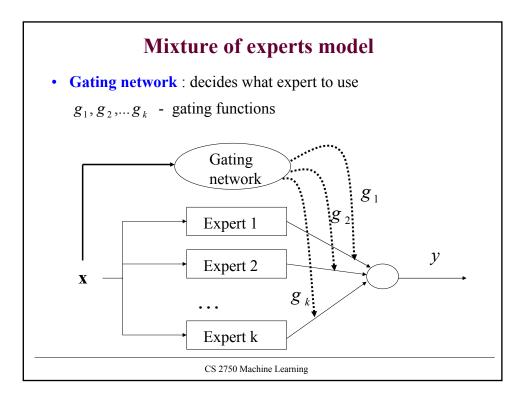
CS 2750 Machine Learning Lecture 20a

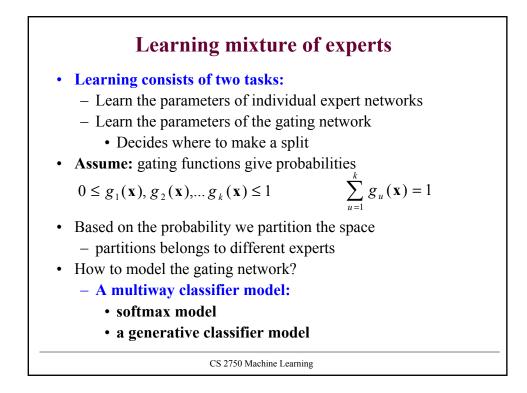
Ensamble methods. Mixtures of experts

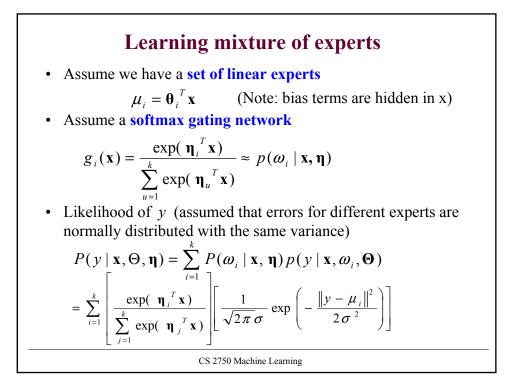
Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

CS 2750 Machine Learning









Learning mixture of experts Gradient learning. On-line update rule for parameters $\boldsymbol{\theta}_i$ of expert *i* - If we know the expert that is responsible for \mathbf{x} $\theta_{ij} \leftarrow \theta_{ij} + \alpha_{ij} (y - \mu_i) x_j$ - If we do not know the expert $\theta_{ij} \leftarrow \theta_{ij} + \alpha_{ij} h_i (y - \mu_i) x_j$ h_i - responsibility of the *i*th expert = a kind of posterior $h_i(\mathbf{x}, y) = \frac{g_i(\mathbf{x}) p(y \mid \mathbf{x}, \omega_i, \mathbf{\theta})}{\sum_{u=1}^k g_u(\mathbf{x}) p(y \mid \mathbf{x}, \omega_u, \mathbf{\theta})} = \frac{g_i(\mathbf{x}) \exp(-1/2 \|y - \mu_i\|^2)}{\sum_{u=1}^k g_u(\mathbf{x}) \exp(-1/2 \|y - \mu_u\|^2)}$ $g_i(\mathbf{x})$ - a prior $\exp(...)$ - a likelihood

Learning mixtures of experts

Gradient methods

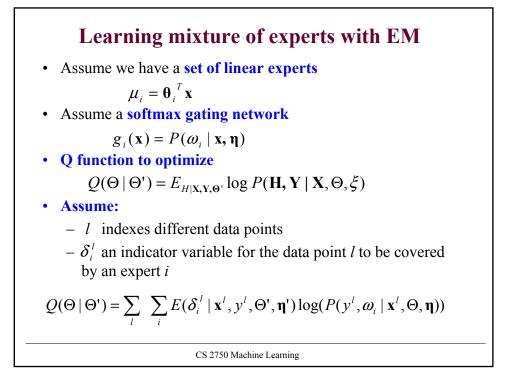
On-line learning of gating network parameters η_i

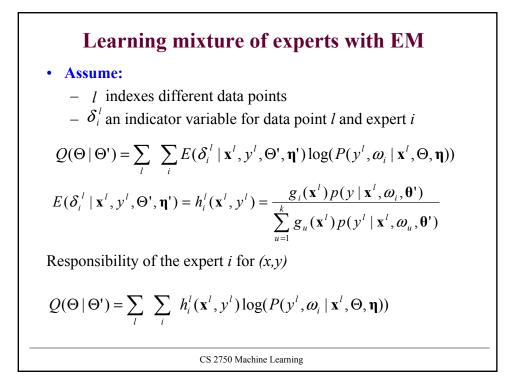
$$\eta_{ij} \leftarrow \eta_{ij} + \beta_{ij} (h_i(\mathbf{x}, y) - g_i(\mathbf{x})) x_j$$

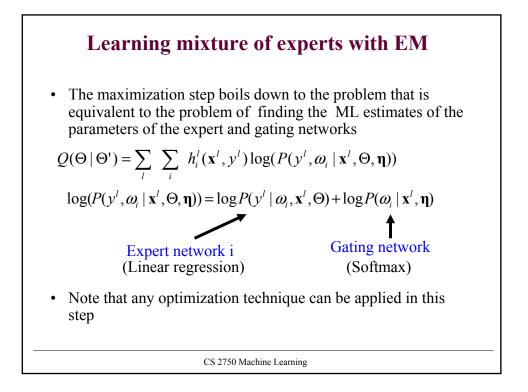
- The learning with conditioned mixtures can be extended to learning of parameters of an **arbitrary expert network**
 - e.g. logistic regression, multilayer neural network

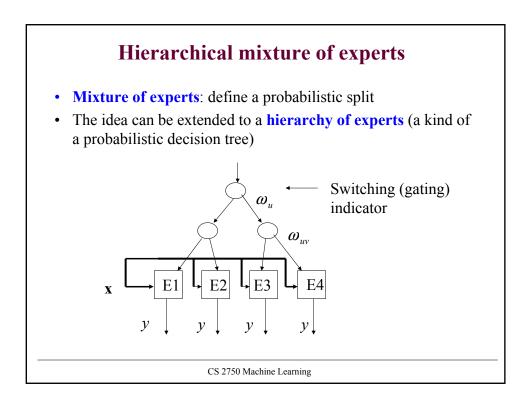
$$\theta_{ij} \leftarrow \theta_{ij} + \beta_{ij} \frac{\partial l}{\partial \theta_{ij}}$$
$$\frac{\partial l}{\partial \theta_{ij}} = \frac{\partial l}{\partial \mu_i} \frac{\partial \mu_i}{\partial \theta_{ij}} = h_i \frac{\partial \mu_i}{\partial \theta_{ij}}$$

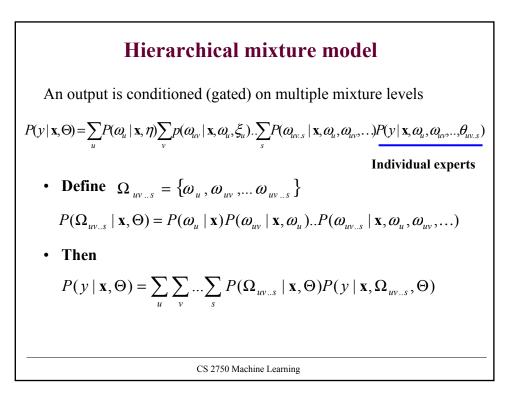
<section-header> Learning mixture of experts EM algorithm offers an alternative way to learn the mixture Algorithm: Initialize parameters Θ Repeat Set Θ' = Θ 1. Expectation step Q(Θ | Θ') = E_{H|X,Y,Θ'} log P(H, Y | X, Θ, ξ) 2. Maximization step Θ = arg max Q(Θ | Θ') until no or small improvement in Q(Θ | Θ') until no or small improvement in Q(Θ | Θ') Hidden variables are identities of expert networks responsible for (x,y) data points

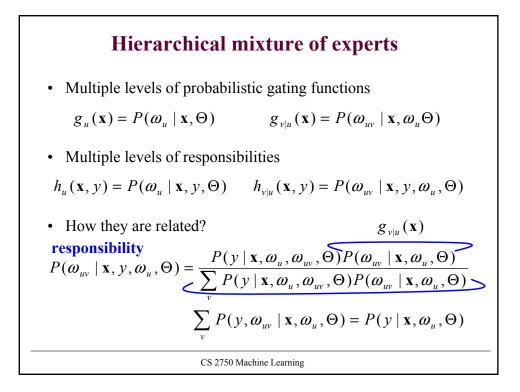


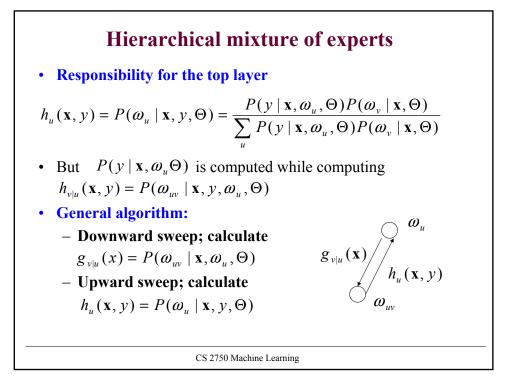












On-line learning • Assume linear experts $\mu_{uv} = \theta_{uv}^{T} \mathbf{x}$ • **Gradients (vector form):** $\frac{\partial l}{\partial \theta_{uv}} = h_{u}h_{v|u}(y - \mu_{uv})\mathbf{x}$ $\frac{\partial l}{\partial \mathbf{\eta}} = (h_{u} - g_{u})\mathbf{x}$ Top level (root) node $\frac{\partial l}{\partial \xi} = h_{u}(h_{v|u} - g_{v|u})\mathbf{x}$ Second level node • Again: can it can be extended to different expert networks

CS 2750 Machine Learning Lecture 20b

Ensemble methods: Bagging.

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square

CS 2750 Machine Learning

Ensemble methods
Mixture of experts
 Different 'base' models (classifiers, regressors) cover different parts of the input space
Alternative idea:
 Train several 'base' models on the complete input space, but on slightly different train sets
 Combine their decision to produce the final result
 Sometimes called Committee machines
• Goal: Improve the accuracy of the 'base' model
Methods:
– Bagging
– Boosting
- Stacking (not covered)
CS 2750 Machine Learning

Bagging (Bootstrap Aggregating)

- Given:
 - Training set of *N* examples
 - A class of learning models (e.g. decision trees, neural networks, ...)
- Goal:
 - Improve the accuracy of one model by using multiple copies of it
- Motivation:
 - Recall: Average of misclassification errors on different data splits gives a better estimate of the predictive ability of a learning method
 - Train multiple models on different samples and average their predictions

CS 2750 Machine Learning

Bagging algorithm
• Training
- In each iteration $t, t=1,T$
• Randomly sample with replacement <i>N</i> samples from the training set
 Train a chosen "base model" (e.g. neural network, decision tree) on the samples
• Test
 For each test example
Start all trained base models
• Predict by combining results of all T trained models:
- Regression: averaging
- Classification: a majority vote
CS 2750 Machine Learning

