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Ensamble methods. 
Mixtures of experts

CS 2750 Machine Learning

Mixture of experts model

• Ensamble methods:
– Use a combination of simpler learners to improve 

predictions
• Mixture of expert model:

– Covers different input regions with different  learners
– A “soft” switching between learners

• Mixture of experts
Expert = learner
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Mixture of experts model
• Gating network : decides what expert to use
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Learning mixture of experts
• Learning consists of two tasks:

– Learn the parameters of individual expert networks
– Learn the parameters of the gating network

• Decides where to make a split
• Assume: gating functions give probabilities

• Based on the probability we partition the space
– partitions belongs to different experts 

• How to model the gating network? 
– A multiway classifier model:

• softmax model
• a generative classifier model
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Learning mixture of experts
• Assume we have a set of linear experts

• Assume a softmax gating network

• Likelihood of  y (assumed that errors for different experts are 
normally distributed with the same variance)
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Learning mixture of experts
Gradient learning.

On-line update rule for parameters        of expert i
– If we know the expert that is responsible for x

– If we do not know the expert
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Learning mixtures of experts

Gradient methods
• On-line learning of gating network  parameters

• The learning with conditioned mixtures can be extended to 
learning of parameters of an arbitrary expert network
– e.g. logistic regression, multilayer neural network
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Learning mixture of experts
EM algorithm offers an alternative way to learn the mixture
Algorithm:
Initialize parameters

Repeat 
Set 
1. Expectation step

2. Maximization step

until  no or small improvement in  
– Hidden variables are identities of expert networks 

responsible for (x,y) data points 
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Learning mixture of experts with EM
• Assume we have a set of linear experts

• Assume a softmax gating network 

• Q function to optimize

• Assume:
– indexes different data points
– an indicator variable for the data point l to be covered  

by an expert i
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Learning mixture of experts with EM
• Assume:

– indexes different data points
– an indicator variable for data point l and expert i
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Learning mixture of experts with EM

• The maximization step boils down to the problem that is 
equivalent to the problem of  finding the  ML estimates of the 
parameters of the expert and gating networks

• Note that any optimization technique can be applied in this 
step
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Hierarchical mixture of experts

• Mixture of experts: define a probabilistic split
• The idea can be extended to a hierarchy of experts (a kind of 

a probabilistic decision tree)
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Hierarchical mixture model

An output is conditioned (gated) on multiple mixture levels

• Define

• Then
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Hierarchical mixture of experts

• Multiple levels of probabilistic gating functions

• Multiple levels of responsibilities

• How they are related?
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Hierarchical mixture of experts
• Responsibility for the top layer

• But                             is computed while computing

• General algorithm:
– Downward sweep; calculate

– Upward sweep; calculate
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On-line learning

• Assume linear experts
• Gradients (vector form):

• Again: can it can be extended to different expert networks

xθ T
uvuv =µ

x
θ

)(| uvuvu
uv

yhhl µ−=
∂
∂

x
η

)( uu ghl −=
∂
∂

x
ξ

)( || uvuvu ghhl −=
∂
∂

Top level (root) node

Second level node



9

CS 2750 Machine Learning

CS 2750 Machine Learning
Lecture 20b

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Ensemble methods:
Bagging. 

CS 2750 Machine Learning

Ensemble methods

• Mixture of experts
– Different ‘base’ models (classifiers, regressors)  cover 

different parts of the input space
• Alternative idea:

– Train several ‘base’ models on the complete input space, 
but on slightly different train sets 

– Combine their decision to produce the final result
• Sometimes called Committee machines

• Goal: Improve the accuracy of the ‘base’ model
• Methods:

– Bagging
– Boosting
– Stacking (not covered)
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Bagging (Bootstrap Aggregating)

• Given:
– Training set of N examples
– A class of learning models (e.g. decision trees, neural 

networks, …)
• Goal:

– Improve the accuracy of  one model by using multiple 
copies of it

• Motivation:
– Recall: Average of misclassification errors on different 

data splits gives a better estimate of the predictive ability 
of a learning method

– Train multiple models on different samples and average 
their predictions 

CS 2750 Machine Learning

Bagging algorithm

• Training
– In each iteration t, t=1,…T

• Randomly sample with replacement N samples from the 
training set

• Train a chosen “base model” (e.g. neural network, 
decision tree) on the samples

• Test
– For each test example

• Start all trained base models
• Predict by combining results of all T trained models:

– Regression: averaging
– Classification: a majority vote
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Simple Majority Voting

Final

Class “yes”

H1

H3

Test examples

Class “no”

H2
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• Expected error= Bias+Variance
– Expected error is the expected discrepancy between the 

estimated and true function

– Bias is squared discrepancy between averaged
estimated and true function

– Variance is expected divergence of the estimated 
function vs. its average value

When Bagging Works
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When Bagging works?
Under-fitting and over-fitting

• Under-fitting:
– High bias (models are not 

accurate)
– Small variance  (smaller 

influence of examples in the 
training set)

• Over-fitting:
– Small bias (models flexible 

enough to fit well to training 
data)

– Large variance  (models 
depend very much on the 
training set)
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Averaging decreases variance

• Example
– Assume we measure a random variable x with a N(µ,σ2) 

distribution
– If only one measurement x1 is done,

• The expected mean of the measurement is µ
• Variance is Var(x1)=σ2

– If random variable x is measured K times (x1,x2,…xk) and 
the value is estimated as: (x1+x2+…+xk)/K, 

• Mean of the estimate is still µ
• But, variance is smaller:

– [Var(x1)+…Var(xk)]/K2=Kσ2 / K2 = σ2/K
• Observe: Bagging is a kind of averaging!
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When Bagging works 

• Main property of Bagging (proof omitted)
– Bagging decreases variance of the base model without 

changing the bias!!!
– Why? averaging!

• Bagging typically helps 
– When applied with an over-fitted base model

• High dependency on actual training data
• It does not help much

– High bias. When the base model is robust to the 
changes in the training data (due to sampling)


