
1

CS 2750 Machine Learning

CS 2750  Machine Learning

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square, x4-8845

http://www.cs.pitt.edu/~milos/courses/cs2750/

Lecture 2

Designing a learning system
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Design of a learning system (first view)

Data

Model selection

Learning

Application
or Testing
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Design of a learning system.

1. Data:
2. Model selection:
• Select a model or a set of models (with parameters)

E.g.
• Select the error function to be optimized

E.g.

3. Learning:
• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 
4. Application (Evaluation):
• Apply the learned model

– E.g. predict ys for new inputs x using learned
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Design cycle 

Data

Feature selection

Model selection

Learning

Evaluation

Require some prior 
knowledge



3

CS 2750 Machine Learning

Design cycle

Data

Feature selection

Model selection

Learning

Evaluation

Require prior 
knowledge

CS 2750 Machine Learning

Data
Data may need a lot of:
• Cleaning
• Preprocessing (conversions)
Cleaning:

– Get rid of errors, noise,
– Removal of redundancies

Preprocessing:
– Renaming 
– Rescaling (normalization)
– Discretizations
– Abstraction
– Agreggation
– New attributes
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Data preprocessing
• Renaming (relabeling) categorical values to numbers

– dangerous in conjunction with some learning methods
– numbers will impose an order that is not warrantied

• Rescaling (normalization): continuous values transformed to 
some range, typically [-1, 1] or [0,1].

• Discretizations (binning): continuous values to a finite set of 
discrete values

• Abstraction: merge together categorical values
• Aggregation: summary or aggregation operations, such 

minimum value, maximum value etc.
• New attributes:

– example: obesity-factor = weight/height

CS 2750 Machine Learning

Data biases
• Watch out for data biases:

– Try to understand the data source
– It is very easy to derive “unexpected” results when data 

used for analysis and learning are biased (pre-selected)
– Results (conclusions) derived for pre-selected data do not 

hold in general !!!
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Data biases
Example 1: Risks in pregnancy study

– Sponsored by DARPA at military hospitals
– Study of a large sample of pregnant woman
– Conclusion: the factor with the largest impact on reducing 

risks during pregnancy (statistically significant) is a 
pregnant woman being single 

– Single woman -> the smallest risk 
– What is wrong?

CS 2750 Machine Learning

Data

Example 2: Stock market trading (example by Andrew Lo)
– Data on stock performances of companies traded on stock 

market over past 25 year
– Investment goal: pick a stock to hold long term 
– Proposed strategy: invest in a company stock with an IPO 

corresponding to a Carmichael number 
- Evaluation result: excellent return over 25 years
- Where the magic comes from?
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Feature selection

• The size (dimensionality) of a sample can be enormous

• Example: document classification
– 10,000 different words
– Inputs: counts of occurrences of different words
– Too many parameters to learn (not enough samples to 

justify the estimates the parameters of the model)
• Dimensionality reduction: replace inputs with features

– Extract relevant inputs (e.g. mutual information measure)
– PCA – principal component analysis
– Group (cluster) similar words (uses a similarity measure)

• Replace with the group label
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Model selection
• What is the right model to learn?

– A prior knowledge helps a lot, but still a lot of guessing
– Initial data analysis and visualization

• We can make a good guess about the form of the 
distribution, shape of the function

– Independences and correlations
– Overfitting problem

• Take into account the bias and variance of error 
estimates
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Learning
• Learning  = optimization problem. Various criteria:

– Mean square error

– Maximum likelihood (ML) criterion

– Maximum posterior probability (MAP)
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Learning
Learning  = optimization problem
• Optimization problems can be hard to solve. Right choice of  a 

model and an error function makes a difference.
• Parameter optimizations

• Gradient descent, Conjugate gradient
• Newton-Rhapson
• Levenberg-Marquard

Some can be carried on-line on a sample by sample basis 
Combinatorial optimizations (over discrete spaces):

• Hill-climbing
• Simulated-annealing
• Genetic algorithms

CS 2750 Machine Learning

Parametric optimizations

• Sometimes can be solved directly but this depends on the error 
function and the model
– Example: squared error criterion for linear regression

• Very often the error function to be optimized is not that nice. 

- a complex function of weights (parameters)
Goal:

• Typical solution: iterative methods.
• Example: Gradient-descent method

Idea:  move the weights (free parameters) gradually in the error 
decreasing direction
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Gradient descent method
• Descend to the minimum of the function using the gradient 

information

• Change the parameter value of w according to the gradient
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Gradient descent method

• New value of the parameter

- a learning rate (scales the gradient changes)
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Gradient descent method
• To get to the function minimum repeat (iterate) the gradient 

based update few times

• Problems: local optima, saddle points, slow convergence
• More complex optimization techniques use additional 

information (e.g. second derivatives)
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On-line learning (optimization)

• On-line error - separates the contribution from a data point 

• Example: On-line gradient descent

• Advantages: 1. simple learning algorithm
2. no need to store data (on-line data streams)
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Derivatives based on different data points

• Error function looks at all data points at the same time
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Covered earlier

CS 2750 Machine Learning

• Simple holdout method. 
– Divide the data to the training and test data. 

• Other more complex methods
– Based on cross-validation, random sub-sampling.

• What if we want to compare the predictive performance on a 
classification or a regression problem  for two different 
learning methods?

• Solution: compare the error results on the test data set
• Possible answer: the method with better (smaller) testing error 

gives a better generalization error.
• Is this a good answer? How sure are we about the method with 

a better test score being truly better? 

Evaluation. 
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• Problem: we cannot be 100 %  sure about generalization errors
• Solution: test the statistical significance of the result
• Central limit theorem:

Let random variables                         form a random sample 
from a distribution with mean        and variance       ,  then if 
the sample n is large, the distribution

Evaluation. 
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