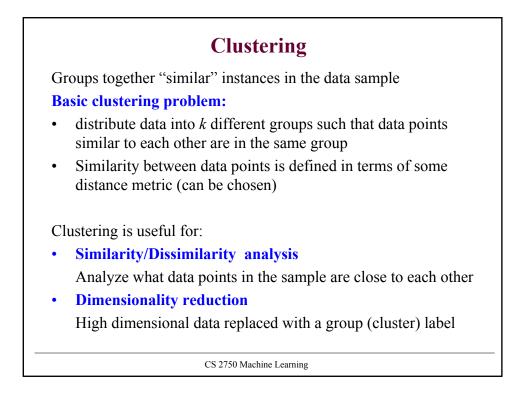
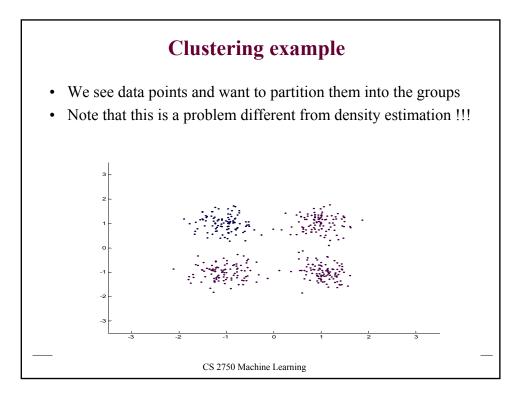
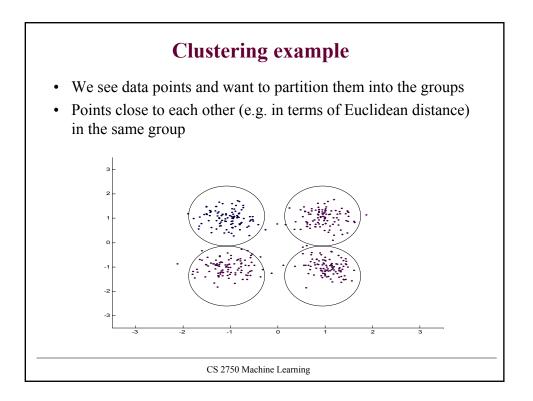
CS 2750 Machin Lecture	U
Clusteri	ng
Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square	
CS 2750 Machine	Learning



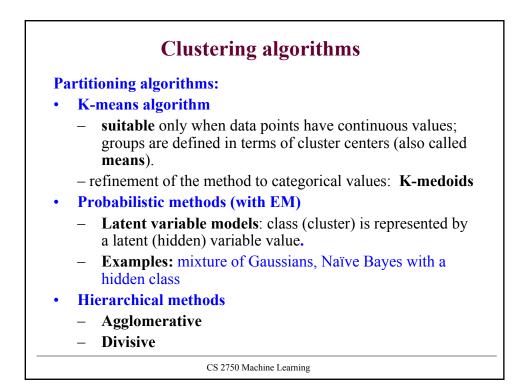




Clustering example

- A set of patient cases
- We want to partition them into the groups based on similarities

Patient #	Age	Sex	Heart Rate	Blood pressure
Patient 1	55	М	85	125/80
Patient 2	62	М	87	130/85
Patient 3	67	F	80	126/86
Patient 4	65	F	90	130/90
Patient 5	70	М	84	135/85



K-means

K-Means algorithm:

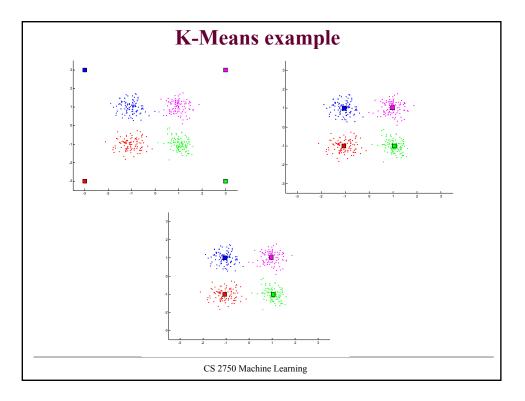
Initialize randomly *k* values of means (centers) Repeat two steps until no change in the means:

- Partition the data according to the current set of means (using the similarity measure)
- Move the means to the center of the data in the current partition

Stop when no change in the means

Properties:

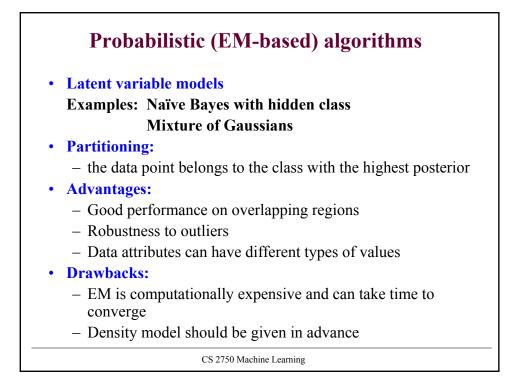
- Minimizes the sum of squared center-point distances for all clusters
- The algorithm always converges (local optima).



K-means algorithm

• Properties:

- converges to centers minimizing the sum of squared centerpoint distances (still local optima)
- The result is sensitive to the initial means' values
- Advantages:
 - Simplicity
 - Generality can work for more than one distance measure
- Drawbacks:
 - Can perform poorly with overlapping regions
 - Lack of robustness to outliers
 - Good for attributes (features) with continuous values
 - Allows us to compute cluster means



Hierarchical clustering.

Uses an arbitrary similarity/dissimilarity measure.
Typical similarity measures d(a,b) :
Pure real-valued data-points:

Euclidean, Manhattan, Minkowski distances

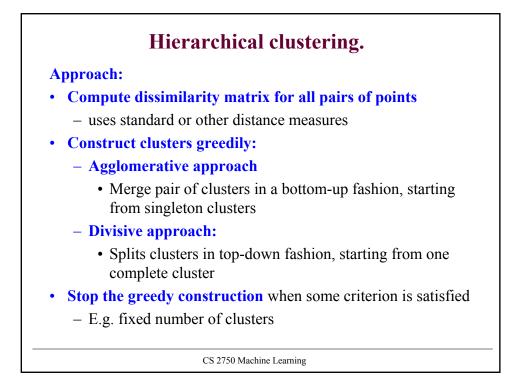
Pure binary values data:

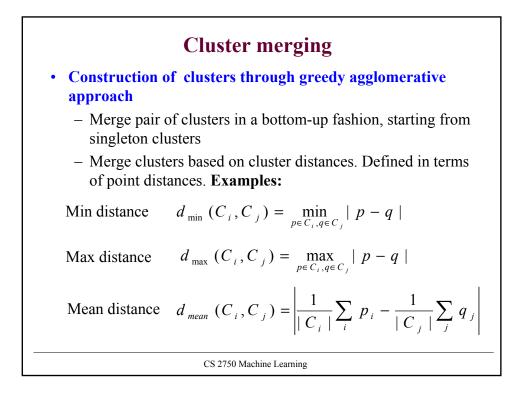
Number of matching values

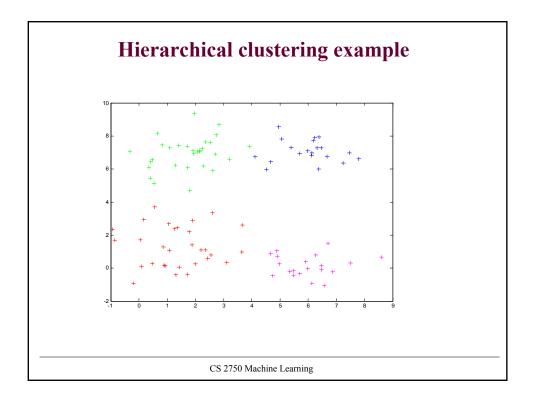
Pure categorical data:

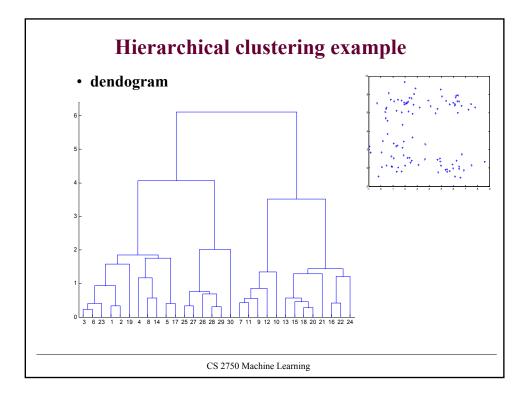
Number of matching values

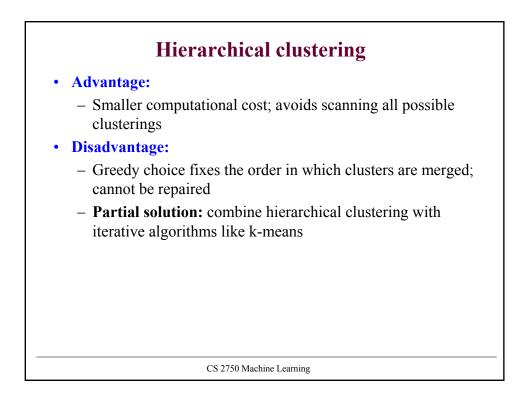
Combination of real-valued and categorical attributes
A weighted sum approach







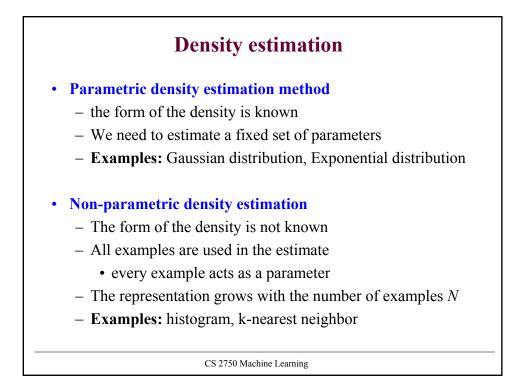


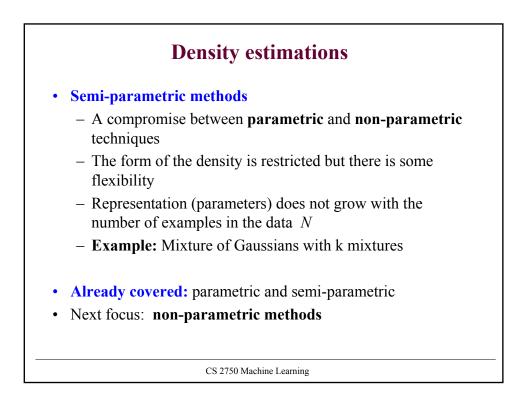


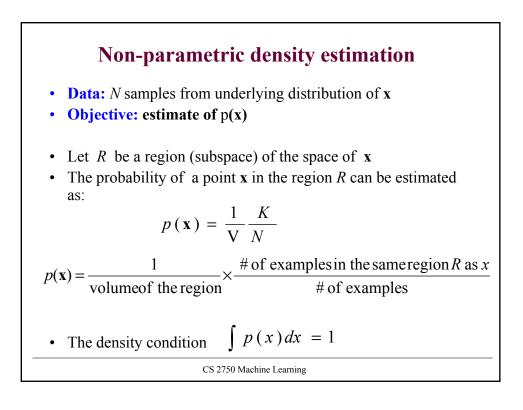
CS 2750 Machine Learning Lecture 17b

Non-parametric density estimation

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square







Non-parametric density estimation

• We want an estimate:

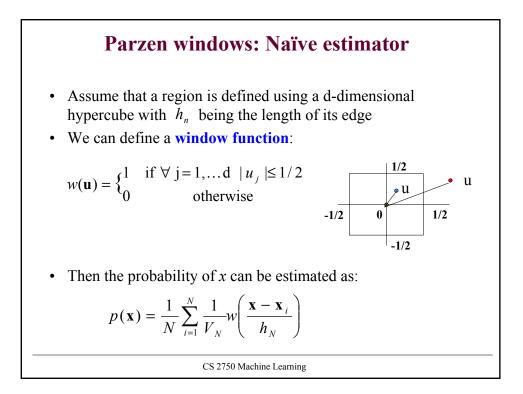
$$p(\mathbf{x}) = \frac{1}{\mathrm{V}} \frac{K}{N}$$

• Two options we have here:

 Fix V around x and count the number of examples in the data falling into the volume

Examples: Parzen windows, kernel regression

Fix K and compute the volume around it
 Example: K-nearest neighbors



Parzen windows: Naïve estimator

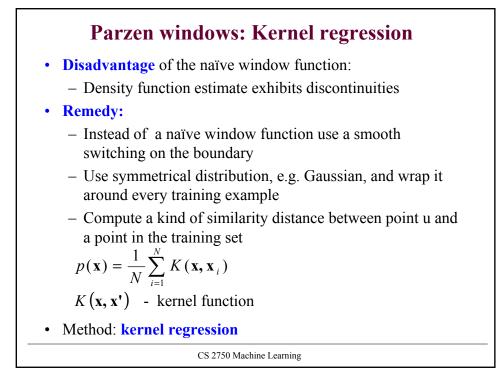
• Then the probability of *x* can be estimated as:

$$p(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{V_N} w \left(\frac{\mathbf{x} - \mathbf{x}_i}{h_N} \right)$$

• For $N \to \infty$, $h_N \to 0$, $p(\mathbf{x})$ converges to the correct value

$$p(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} \frac{1}{V_N} w \left(\frac{x - x_i}{h_N} \right)$$

$$\stackrel{N \to \infty}{\to} \frac{1}{V_N} P(x_j - h_N / 2 < x_j < x_j + h_N / 2; \forall j) \stackrel{h_N \to 0}{\to} p(\mathbf{x})$$



Parzen windows: Gaussian kernel

- Probability estimate through kernel regression
 - Gaussian kernels

$$p(\mathbf{x}) = \frac{1}{N} \sum_{i=1}^{N} K(\mathbf{x}, \mathbf{x}_{i})$$

$$= \frac{1}{N} \sum_{i=1}^{N} \frac{1}{(2\pi)^{d/2} |\sigma^2 \mathbf{I}|^{1/2}} \exp\left[-\frac{1}{2} (\mathbf{x} - \mathbf{x}_i)^T \sigma^2 \mathbf{I} (\mathbf{x} - \mathbf{x}_i)\right]$$

- Advantage: much smoother density estimate as compared to the naïve Parzen window approach
- Other possible symmetrical kernels: Epanechnikov kernel

