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Clustering
Groups together “similar” instances in the data sample
Basic clustering problem:
• distribute data into k different groups such that data points 

similar to each other are in the same group 
• Similarity between data points is defined in terms of some 

distance metric (can be chosen)

Clustering is useful for:
• Similarity/Dissimilarity  analysis

Analyze what data points in the sample are close to each other 
• Dimensionality reduction

High dimensional data replaced with a group (cluster) label
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Clustering example

• We see data points and want to partition them into the groups
• Note that this is a problem different from density estimation !!!
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CS 2750 Machine Learning

Clustering example
• We see data points and want to partition them into the groups
• Points close to each other (e.g. in terms of Euclidean distance)

in the same group

-3 -2 -1 0 1 2 3

-3

-2

-1

0

1

2

3



3

CS 2750 Machine Learning

Clustering example

• A set of patient cases 
• We want to partition them into the groups based on similarities

Patient #        Age    Sex     Heart Rate     Blood pressure … 

Patient  1        55        M            85                    125/80 

Patient  2        62        M            87                    130/85 

Patient  3        67        F             80                    126/86 

Patient  4        65        F             90                    130/90 

Patient  5        70        M            84                    135/85 
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Clustering algorithms
Partitioning algorithms: 
• K-means algorithm 

– suitable only when data points have continuous values; 
groups are defined in terms of cluster centers (also called 
means).

– refinement of the method to categorical values:  K-medoids
• Probabilistic methods (with EM)

– Latent variable models: class (cluster) is represented by 
a latent (hidden) variable value. 

– Examples: mixture of Gaussians, Naïve Bayes with a 
hidden class

• Hierarchical methods
– Agglomerative
– Divisive



4

CS 2750 Machine Learning

K-means
K-Means algorithm:

Initialize randomly k values of means (centers)
Repeat two steps until no change in the means:
– Partition the data according to the current set of means 

(using the similarity measure)
– Move the means to the center of the data in the current 

partition
Stop when no change in the means

Properties: 
• Minimizes the sum of squared center-point distances for all 

clusters 
• The algorithm always converges (local optima). 
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K-Means example
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K-means algorithm

• Properties:
– converges to centers minimizing the sum of squared center-

point distances (still local optima) 
– The result is sensitive to the initial means’ values

• Advantages:
– Simplicity
– Generality – can work for more than one distance measure

• Drawbacks:
– Can perform poorly with overlapping regions
– Lack of robustness to outliers
– Good for attributes (features) with continuous values

• Allows us to compute cluster means
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Probabilistic (EM-based) algorithms

• Latent variable models
Examples:  Naïve Bayes with hidden class

Mixture of Gaussians
• Partitioning: 

– the data point belongs to the class with the highest posterior
• Advantages:

– Good performance on overlapping regions
– Robustness to outliers
– Data attributes can have different types of values

• Drawbacks:
– EM is computationally expensive and can take time to 

converge
– Density model should be given in advance
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Hierarchical clustering. 

Uses an arbitrary similarity/dissimilarity measure.
Typical similarity measures d(a,b) :

Pure real-valued data-points:
– Euclidean, Manhattan, Minkowski distances
Pure binary values data:
– Number of matching values 
Pure categorical data:
– Number of matching values 
Combination of real-valued and categorical attributes
– A weighted sum approach
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Hierarchical clustering. 
Approach:
• Compute dissimilarity matrix for all pairs of points 

– uses standard or other distance measures
• Construct clusters greedily:

– Agglomerative approach
• Merge pair of clusters in a bottom-up fashion, starting 

from singleton clusters
– Divisive approach: 

• Splits clusters in top-down fashion, starting from one 
complete cluster

• Stop the greedy construction when some criterion is satisfied
– E.g. fixed number of clusters
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Cluster merging
• Construction of  clusters through greedy agglomerative 

approach
– Merge pair of clusters in a bottom-up fashion, starting from 

singleton clusters
– Merge clusters based on cluster distances. Defined in terms 

of point distances. Examples:
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Hierarchical clustering example
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Hierarchical clustering example
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Hierarchical clustering
• Advantage:

– Smaller computational cost; avoids scanning all possible 
clusterings

• Disadvantage:
– Greedy choice fixes the order in which clusters are merged; 

cannot be repaired
– Partial solution: combine hierarchical clustering with 

iterative algorithms like k-means
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Non-parametric density    
estimation 
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Density estimation

• Parametric density estimation method
– the form of the density is known
– We need to estimate a fixed set of parameters
– Examples: Gaussian distribution, Exponential distribution

• Non-parametric density estimation
– The form of the density is not known
– All examples are used in the estimate 

• every example acts as a parameter
– The representation grows with the number of examples N
– Examples: histogram, k-nearest neighbor
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Density estimations

• Semi-parametric methods
– A compromise between parametric and non-parametric

techniques
– The form of the density is restricted but there is some 

flexibility
– Representation (parameters) does not grow with the 

number of examples in the data  N
– Example: Mixture of Gaussians with k mixtures

• Already covered: parametric and semi-parametric
• Next focus:  non-parametric methods
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Non-parametric density estimation

• Data: N samples from underlying distribution of x
• Objective: estimate of p(x)

• Let  R be a region (subspace) of the space of  x
• The probability of  a point x in the region R can be estimated 

as:

• The density condition 
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Non-parametric density estimation

• We want an estimate:

• Two options we have here: 
– Fix V around x and count the number of examples in the 

data falling into the volume
Examples: Parzen windows, kernel regression

– Fix K and compute the volume around it
Example: K-nearest neighbors
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Parzen windows: Naïve estimator

• Assume that a region is defined using a d-dimensional 
hypercube with        being the length of its edge 

• We can define a window function:

• Then the probability of x can be estimated as:
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Parzen windows: Naïve estimator

• Then the probability of x can be estimated as:

• For                                    ,             converges to the correct 
value 
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Parzen windows: Kernel regression
• Disadvantage of the naïve window function:

– Density function estimate exhibits discontinuities
• Remedy:

– Instead of  a naïve window function use a smooth 
switching on the boundary 

– Use symmetrical distribution, e.g. Gaussian, and wrap it 
around every training example

– Compute a kind of similarity distance between point u and 
a point in the training set

• Method: kernel regression
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Parzen windows: Gaussian kernel

• Probability estimate through kernel regression
– Gaussian kernels

• Advantage: much smoother density estimate as compared to 
the naïve Parzen window approach

• Other possible symmetrical kernels: Epanechnikov kernel
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K-nearest neighbor
• The problem with the Parzen window approach 

– How to choose the size of the window?
• Idea:

– Make the size of the window (region) vary based  on the 
data in the neighborhood of  x

– Grow the window till k nearest neighbors are captured
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