CS 2750 Machine Learning

Lecture 16

Learning with hidden variables and missing values

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Density estimation with hidden variables

Goal: Find the set of parameters $\hat{\Theta}$
Estimation criteria:

- ML $\max _{\boldsymbol{\Theta}} p(D \mid \boldsymbol{\Theta}, \boldsymbol{\xi})$
- Bayesian ${ }^{\boldsymbol{\Theta}} \quad p(\boldsymbol{\Theta} \mid D, \boldsymbol{\xi})$

Optimization methods for ML: gradient-ascent, conjugate gradient, Newton-Rhapson, etc.

- Problem: No or very small advantage from the structure of the corresponding belief network
Expectation-maximization (EM) method
- An alternative optimization method
- Suitable when there are missing or hidden values
- Takes advantage of the structure of the belief network

General EM

The key idea of a method:
Compute the parameter estimates iteratively by performing the following two steps:
Two steps of the EM:

1. Expectation step. Complete all hidden and missing variables with expectations for the current set of parameters $\boldsymbol{\Theta}^{\prime}$
2. Maximization step. Compute the new estimates of Θ for the completed data
Stop when no improvement possible

EM algorithm

Algorithm (general formulation)
Initialize parameters Θ
Repeat
Set $\quad \Theta^{\prime}=\Theta$

1. Expectation step

$$
Q\left(\Theta \mid \Theta^{\prime}\right)=E_{H \mid D, \Theta^{\prime}} \log P(H, D \mid \Theta, \xi)
$$

2. Maximization step

$$
\Theta=\arg \max Q\left(\Theta \mid \Theta^{\prime}\right)
$$

until no or small improvement in $Q\left(\Theta \mid \Theta^{\prime}\right)$

We proved that the EM algorithm improves the loglikelihood of data

EM advantages

Key advantages:

- In many problems (e.g. Bayesian belief networks)

$$
Q\left(\Theta \mid \Theta^{\prime}\right)=E_{H \mid D, \Theta^{\prime}} \log P(H, D \mid \Theta, \xi)
$$

- has a nice form and the maximization of Q can be carried in the closed form
- No need to compute Q before maximizing
- We directly optimize
- use quantities corresponding to expected counts

Naïve Bayes with a hidden class and missing values

Assume:

- $P(\mathbf{X})$ is modeled using a Naïve Bayes model with hidden class variable
- Missing entries (values) for attributes in the dataset D

Hidden class variable

Attributes are independent given the class

EM for the Naïve Bayes

- We can use EM to learn the parameters

$$
Q\left(\Theta \mid \Theta^{\prime}\right)=E_{H \mid D, \Theta^{\prime}} \log P(H, D \mid \Theta, \xi)
$$

- Parameters:
π_{j} prior on class j
$\theta_{i j k}$ probability of an attribute i having value k given class j
- Indicator variables:
$\delta_{j}{ }^{l}$ for example l, the class is j; if true $(=1)$ else false $(=0)$
$\delta_{i j k}{ }^{l}$ for example l, the class is j and the value of attrib i is k because the class is hidden and some attributes are missing, the values $(0,1)$ of indicator variables are not known; they are hidden
\boldsymbol{H} - a collection of all indicator variables

EM for the Naïve Bayes model

- We can use EM to do the learning of parameters

$$
\begin{gathered}
Q\left(\Theta \mid \Theta^{\prime}\right)=E_{H \mid D, \Theta^{\prime}} \log P(H, D \mid \Theta, \xi) \\
\log P(H, D \mid \Theta, \xi)=\log \prod_{l=1}^{N} \prod_{j} \pi_{j}^{\delta_{j}^{l}} \prod_{i} \prod_{k} \theta_{i j k}^{\delta_{i j k}^{l}} \\
=\sum_{l=1}^{N} \sum_{j}\left(\delta_{j}^{l} \log \pi_{j}+\sum_{i} \sum_{k} \delta_{i j k}^{l} \log \theta_{i j k}\right) \\
E_{H \mid D, \Theta^{\prime}} \log P(H, D \mid \Theta, \xi)=\sum_{l=1}^{N} \sum_{j}\left(E_{H \mid D, \Theta^{\prime}}\left(\delta_{j}^{l}\right) \log \pi_{j}+\sum_{i} \sum_{k} E_{H \mid D, \Theta^{\prime}}\left(\delta_{i j k}^{l}\right) \log \theta_{i j k}\right) \\
E_{H \mid D, \Theta^{\prime}}\left(\delta_{j}^{l}\right)=p\left(C_{l}=j \mid D_{l}, \Theta^{\prime}\right) \\
E_{H \mid D, \Theta^{\prime}}\left(\delta_{i j k}^{l}\right)=p\left(X_{i l}=k, C_{l}=j \mid D_{l}, \Theta^{\prime}\right) \quad \text { Substitutes } 0,1 \\
\text { with expected value }
\end{gathered}
$$

EM for Naïve Bayes model

- Computing derivatives of \boldsymbol{Q} for parameters and setting it to 0

$$
\begin{aligned}
& \text { we get: } \pi_{j}=\frac{\tilde{N}_{j}}{N} \quad \theta_{i j k}=\frac{\tilde{N}_{i j k}}{\sum_{k=1}^{r_{i}} \tilde{N}_{i j k}} \\
& \widetilde{N}_{j}=\sum_{l=1}^{N} E_{H \mid D, \Theta^{\prime}}\left(\delta_{j}^{l}\right)=\sum_{l=1}^{N} p\left(C_{l}=j \mid D_{l}, \Theta^{\prime}\right) \\
& \widetilde{N}_{i j k}=\sum_{l=1}^{N} E_{H \mid D, \Theta^{\prime}}\left(\delta_{i j k}^{l}\right)=\sum_{l=1}^{N} p\left(X_{i l}=k, C_{l}=j \mid D_{l}, \Theta^{\prime}\right)
\end{aligned}
$$

- Important:
- Use expected counts instead of counts !!!
- Re-estimate the parameters using expected counts

EM for BBNs

- The same result applies to learning of parameters of any Bayesian belief network with discrete-valued variables

$$
\begin{aligned}
& \quad Q\left(\Theta \mid \Theta^{\prime}\right)=E_{H \mid D, \Theta^{\prime}} \log P(H, D \mid \Theta, \xi) \\
& \theta_{i j k}=\frac{\widetilde{N}_{i j k}}{\sum_{k=1}^{r_{i}} \widetilde{N}_{i j k}} \longleftarrow \text { Parameter value maximizing } \boldsymbol{Q} \\
& \widetilde{N}_{i j k}=\sum_{l=1}^{N} p\left(x_{i}^{l}=k, p a_{i}^{l}=j \mid D^{l}, \Theta^{\prime}\right) \\
& \text { ragin. }
\end{aligned}
$$

- Again:
- Use expected counts instead of counts

Gaussian mixture model

Assume we want to represent the probability model of a population in a two dimensional space $\mathbf{X}=\left\{X_{1}, X_{2}\right\}$

Examples

Model : 3 Gaussians with a hidden class variable

Gaussian mixture model

Probability of occurrence of a data point \boldsymbol{x} is modeled as

$$
p(\mathbf{x})=\sum_{i=1}^{k} p(C=i) p(\mathbf{x} \mid C=i)
$$

where

$$
p(C=i)
$$

$=$ probability of a data point coming
 from class $C=i$
$p(\mathbf{x} \mid C=i) \approx N\left(\boldsymbol{\mu}_{i}, \boldsymbol{\Sigma}_{i}\right)$
$=$ class conditional density (modeled as a Gaussian)
for class i
Remember: C is hidden !!!!

Hidden variable model

- Mixture of Gaussians

Gaussian mixture model

ML estimate of parameters for the labeled example (as in classification):

$$
\begin{aligned}
N_{i} & =\sum_{j: C_{l}=i} 1 \\
\widetilde{\boldsymbol{\pi}}_{i} & =\frac{N_{i}}{N} \\
\widetilde{\boldsymbol{\mu}}_{i} & =\frac{1}{N_{i}} \sum_{j: C_{l}=i} \mathbf{x}_{j}
\end{aligned}
$$

$$
\mu_{1}, \Sigma_{1} \quad \mu_{2}, \Sigma_{2}
$$

$$
\widetilde{\boldsymbol{\Sigma}}_{i}=\frac{1}{N_{i}} \sum_{j: C_{l}=i}\left(\mathbf{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\mathbf{x}_{j}-\boldsymbol{\mu}_{i}\right)^{T}
$$

Gaussian mixture model

- Gaussians are not labeled
- We can apply EM algorithm:
- re-estimation based on the class posterior
$h_{i l}=p\left(C_{l}=i \mid \mathbf{x}_{l}, \Theta^{\prime}\right)=\frac{p\left(C_{l}=i \mid \Theta^{\prime}\right) p\left(x_{l} \mid C_{l}=i, \Theta^{\prime}\right)}{\sum_{u=1}^{m} p\left(C_{l}=u \mid \Theta^{\prime}\right) p\left(x_{l} \mid C_{l}=u, \Theta^{\prime}\right)}$
$N_{i}=\sum_{l} h_{i l}$

$$
\tilde{\pi}_{i}=\frac{N_{i}}{N}
$$

$\widetilde{\boldsymbol{\mu}}_{i}=\frac{1}{N_{i}} \sum_{l} h_{i l} \mathbf{x}_{j} \quad \begin{aligned} & \text { Mean and variance expressions } \\ & \text { weighted by the class posterior }\end{aligned}$
$\widetilde{\boldsymbol{\Sigma}}_{i}=\frac{1}{N_{i}} \sum_{l} h_{i l}\left(\mathbf{x}_{j}-\boldsymbol{\mu}_{i}\right)\left(\mathbf{x}_{j}-\boldsymbol{\mu}_{i}\right)^{T}$

Gaussian mixture algorithm

- A special case: the same fixed covariance matrix for all hidden groups and uniform prior on classes
- Algorithm:

Initialize means $\boldsymbol{\mu}_{i}$ for all classes i
Repeat two steps until no change in the means:

1. Compute the class posterior for each Gaussian and each point (a kind of responsibility for a Gaussian for a point)
Responsibility: $\quad h_{i l}=\frac{p\left(C_{l}=i \mid \Theta^{\prime}\right) p\left(x_{l} \mid C_{l}=i, \Theta^{\prime}\right)}{\sum_{u=1}^{m} p\left(C_{l}=u \mid \Theta^{\prime}\right) p\left(x_{l} \mid C_{l}=u, \Theta^{\prime}\right)}$
2. Move the means of the Gaussians to the center of the data, weighted by the responsibilities

$$
\begin{aligned}
& \text { by the responsibilities } \\
& \text { New mean: } \quad \boldsymbol{\mu}_{i}=\frac{\sum_{l=1}^{N} h_{i l} \mathbf{x}_{l}}{\sum_{l=1}^{N} h_{i l}}
\end{aligned}
$$

Gaussian mixture model - example

Gaussian mixture example

Gaussian mixture model. Gradient ascent.

- A set of parameters

$$
\Theta=\left\{\pi_{1}, \pi_{2}, . . \pi_{m}, \mu_{1}, \mu_{2}, \ldots \mu_{m}\right\}
$$

Assume unit variance terms and fixed priors

$$
P(\mathbf{x} \mid C=i)=(2 \pi)^{-1 / 2} \exp \left\{-\frac{1}{2}\left\|x-\mu_{i}\right\|^{2}\right\}
$$

$p(C)$
C
$p(x \mid C)$
x

$$
P(D \mid \Theta)=\prod_{l=1}^{N} \sum_{i=1}^{m} \pi_{i}(2 \pi)^{-1 / 2} \exp \left\{-\frac{1}{2}\left\|x_{l}-\mu_{i}\right\|^{2}\right\}
$$

$l(\Theta)=\sum_{l=1}^{N} \log \sum_{i=1}^{m} \pi_{i}(2 \pi)^{-1 / 2} \exp \left\{-\frac{1}{2}\left\|x_{l}-\mu_{i}\right\|^{2}\right\}$
$\frac{\partial l(\Theta)}{\partial \mu_{i}}=\sum_{l=1}^{N} h_{i l}\left(x_{l}-\mu_{i}\right) \quad$ - very easy on-line update

EM versus gradient ascent

Gradient ascent
$\mu_{i} \leftarrow \mu_{i}+\alpha \sum_{l=1}^{N} h_{i l}\left(x_{l}-\mu_{i}\right)$
EM
$\mu_{i} \leftarrow \frac{\sum_{l=1}^{N} h_{i l} \mathbf{x}_{l}}{\sum_{l=1}^{N} h_{i l}}$
Learning rate

Small pull towards distant uncovered data

No learning rate

Renormalized - big jump in the first step

K-means approximation to EM

Expectation-Maximization:

- posterior measures the responsibility of a Gaussian for every point

K- Means $h_{i l}=\frac{p\left(C_{l}=i \mid \Theta^{\prime}\right) p\left(x_{l} \mid C_{l}=i, \Theta^{\prime}\right)}{\sum_{u=1}^{m} p\left(C_{l}=u \mid \Theta^{\prime}\right) p\left(x_{l} \mid C_{l}=u, \Theta^{\prime}\right)}$

- Only the closest Gaussian is made responsible for a point

$$
\begin{array}{ll}
h_{i l}=1 & \text { If } \mathrm{i} \text { is the closest Gaussian } \\
h_{i l}=0 & \text { Otherwise }
\end{array}
$$

Re-estimation of means $\mu_{i}=\frac{\sum_{l=1}^{N} h_{i l} \mathbf{x}_{l}}{\sum_{l=1}^{N} h_{i l}}$

- Results in moving the means of Gaussians to the center of the data points it covered in the previous step

K-means algorithm

Useful for clustering data:

- Assume we want to distribute data into k different groups
- Similarity between data points is measured in terms of the distance
- Groups are defined in terms of centers (also called means)

K-Means algorithm:

Initialize k values of means (centers)
Repeat two steps until no change in the means:

- Partition the data according to the current means (using the similarity measure)
- Move the means to the center of the data in the current partition

K-means algorithm

- Properties
- converges to centers minimizing the sum of center-point distances (local optima)
- The result may be sensitive to the initial means' values
- Advantages:
- Simplicity
- Generality - can work for an arbitrary distance measure
- Drawbacks:
- Can perform poorly on overlapping regions
- Lack of robustness to outliers (outliers are not covered)

