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Density estimation with hidden 
variables  and missing values

CS 2750 Machine Learning

Project proposals

Due: Monday, March 24, 2003
• 1-2 pages long
Proposal 
• Written proposal:

1. Outline of a learning problem, type of data you have 
available. Why is the problem important?

2. Learning methods you plan to try and implement for the 
problem.  References to previous work.

3. How do you plan to test, compare learning approaches
4. Schedule of work (approximate timeline of work)

• Short 5 minute PPT presentation summarizing  points  1-4
– Make it ready through internet
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Learning probability distribution

Basic learning settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters 
• Data

s.t.
Objective: find parameters       that describe the data 
Assumptions considered so far:

– Known parameterizations
– No hidden variables 
– No-missing values
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Hidden variables
Modeling assumption: 
Variables                                       are related through  hidden 

variables 
Why to add hidden variables?
• More flexibility in describing the distribution
• Smaller parameterization of 

– New independences can be introduced via hidden 
variables

Example: 
• Latent variable models

– hidden classes (categories)
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Hidden variable model. Example.
• We want to represent the probability model of a population    

in a two dimensional space

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-1

-0.5

0

0.5

1

1.5

2

2.5

3

},{ 21 XX=X

Observed data

CS 2750 Machine Learning

Hidden variable model
• We want to represent the probability model of a population    

in a two dimensional space
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Hidden variable model
• We want to represent the probability model of a population    

in a two dimensional space
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Hidden variable model
• We want to represent the probability model of a population    

in a two dimensional space
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Mixture of Gaussians

Probability of  the occurrence of  a data point  x  
is modeled as

where

=  probability of a data point coming 
from class C=i 

= class-conditional density (modeled as Gaussian)
for class i
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Mixture of Gaussians

• Density function for the Mixture of Gaussians model
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Naïve Bayes with a hidden class variable

Introduction of a hidden variable can reduce the number of 
parameters defining           

Example: 
• Naïve Bayes model with a hidden class variable

• Useful in customer profiles
– Class value = type of customers

)(XP

1X 2X nX…

Hidden class variable

Attributes are independent
given the class

C

CS 2750 Machine Learning

Missing values

A set of random variables 
• Data
• But some values are missing

• Example: medical records
• We still want to estimate parameters of 
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Density estimation

Goal: Find the set of parameters
Estimation criteria:
– ML

Optimization methods for ML: gradient-ascent, conjugate 
gradient, Newton-Rhapson, etc.

• Problem: No or very small advantage from the structure of the 
corresponding belief network

Expectation-maximization (EM) method
– An alternative optimization method
– Suitable when there are missing or hidden values
– Takes advantage of the structure of the belief network
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General EM

The key idea of a method:
Compute the parameter estimates iteratively by performing the 

following two steps: 
Two steps of the EM:
1. Expectation step. Complete all hidden and missing variables 

with expectations for the current set of parameters
2. Maximization step. Compute the new estimates of        for 

the completed data 
Stop when no improvement possible
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EM
Let H – be a set of all variables with hidden or missing values
Derivation
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EM algorithm
Algorithm (general formulation)

Initialize parameters
Repeat 
Set 
1. Expectation step

2. Maximization step

until  no or small improvement in  

Questions: Why this leads to the ML estimate ?
What is the advantage of the algorithm?

Θ

),|,(log)'|( ',| ξΘ=ΘΘ Θ DHPEQ DH

)'|(maxarg ΘΘ=Θ
Θ

Q

)'( Θ=Θ

Θ=Θ '

Θ



9

CS 2750 Machine Learning

EM algorithm

• Why is the EM algorithm correct?
• Claim: maximizing Q improves the log-likelihood
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Difference in log-likelihoods (current and next step)
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EM algorithm

)'|'()'|()'|'()'|()'()( ΘΘ−ΘΘ+ΘΘ−ΘΘ=Θ−Θ HHQQll

Difference in log-likelihoods

Thus
by maximizing Q we maximize the log-likelihood
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EM is a first-order optimization procedure
• Climbs the gradient
• Automatic learning rate

No need to adjust the learning rate !!!!
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EM advantages

Key advantages:
• In many problems (e.g. Bayesian belief networks)

– has a nice form and the maximization of Q can be carried in  
the closed form

• No need to compute Q before maximizing 
• We directly optimize 

– use quantities corresponding to expected counts
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