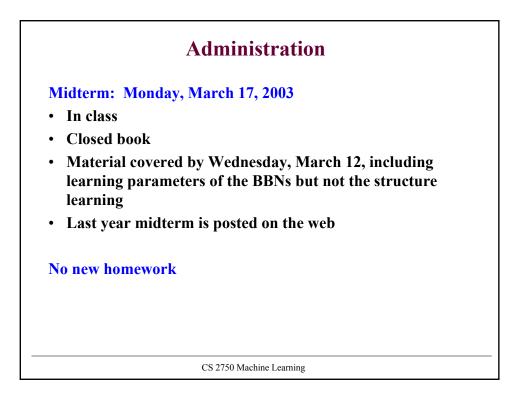
CS 2750 Machine Learning Lecture 14

Learning Bayesian belief networks

Milos Hauskrecht <u>milos@cs.pitt.edu</u> 5329 Sennott Square



Learning probability distribution

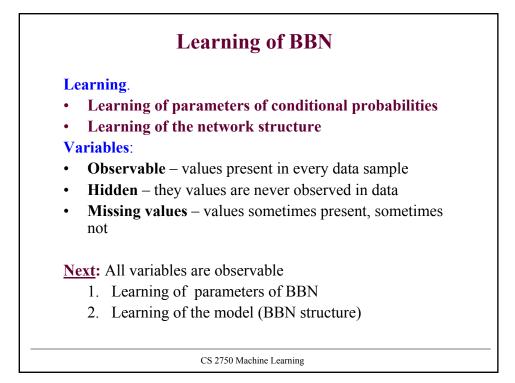
Basic settings:

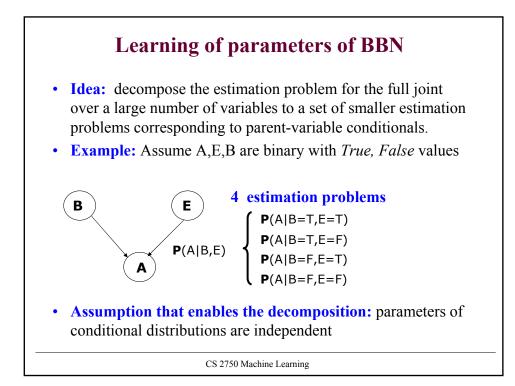
- A set of random variables $\mathbf{X} = \{X_1, X_2, \dots, X_n\}$
- A model of the distribution over variables in X with parameters Θ
- **Data** $D = \{D_1, D_2, ..., D_N\}$

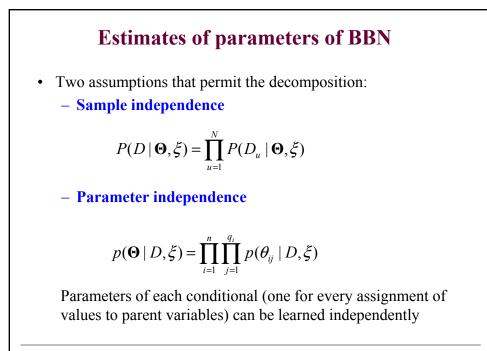
Objective: find parameters $\hat{\Theta}$ that describe the data the best

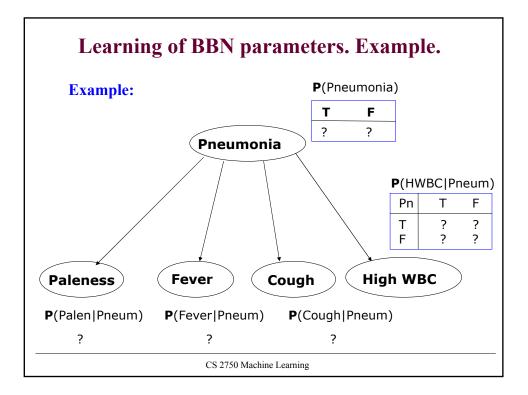
Learning Bayesian belief networks:

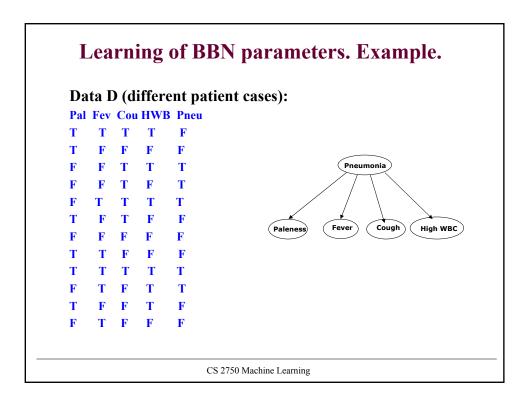
- parameterizations as defined by the structure of network

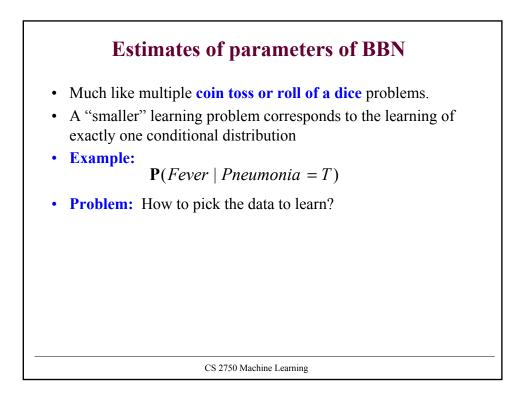


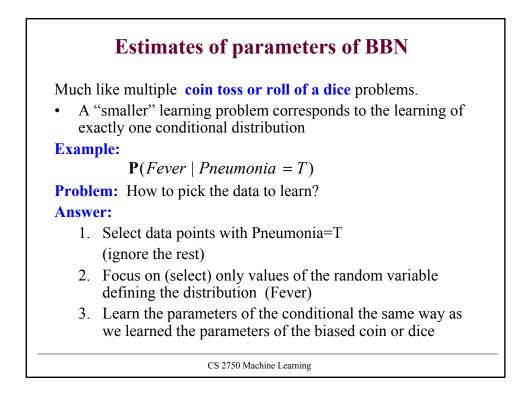


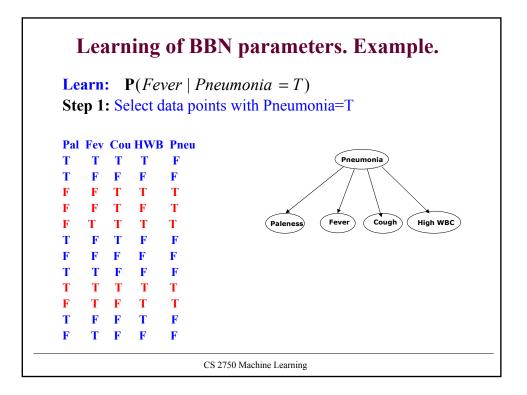


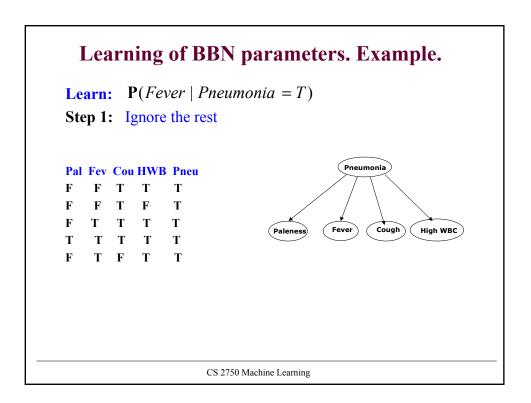


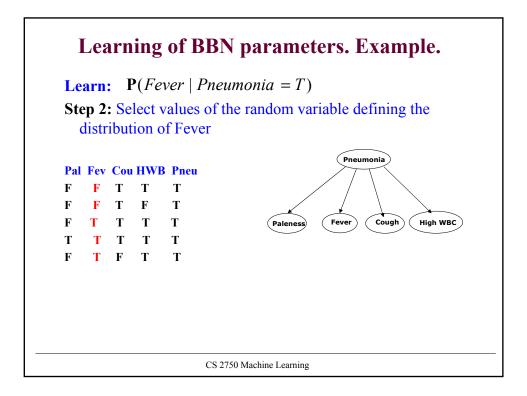


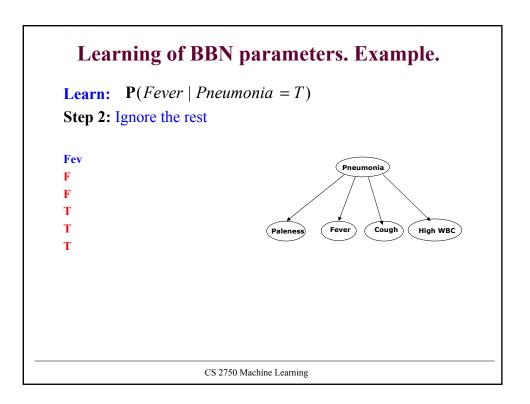


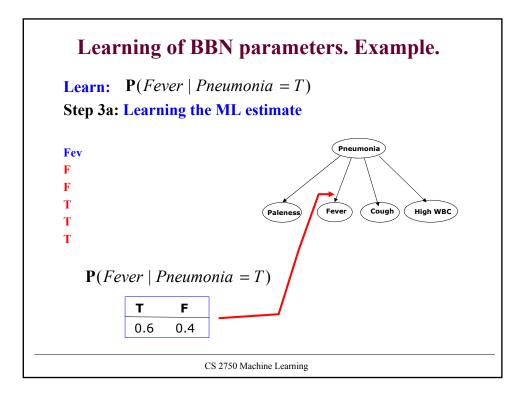


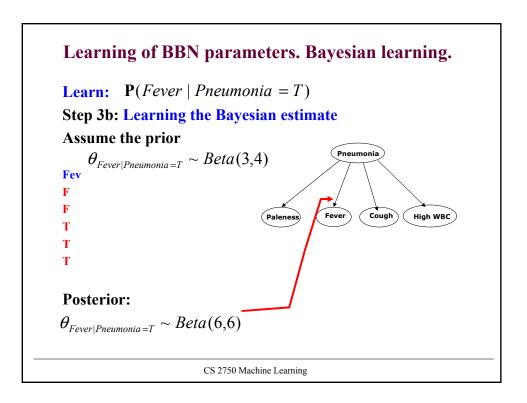


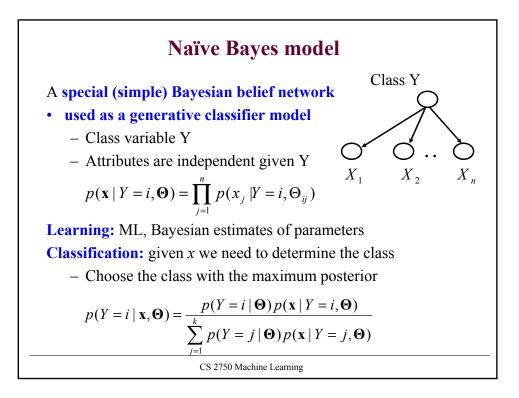


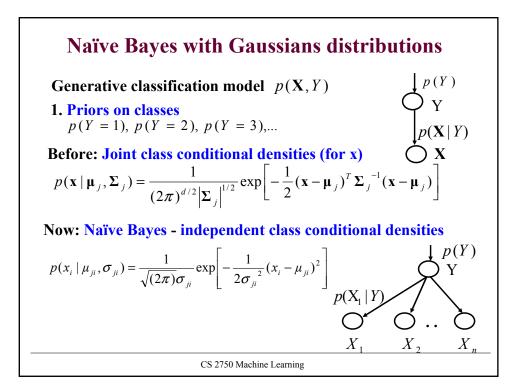


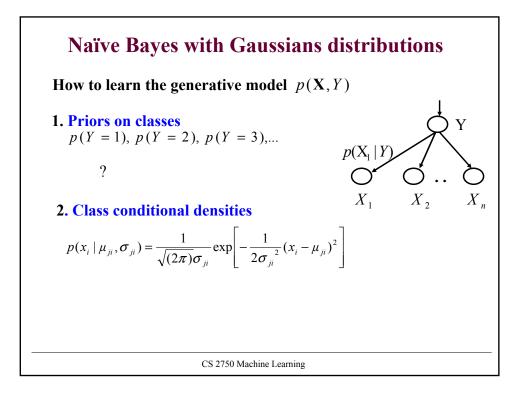


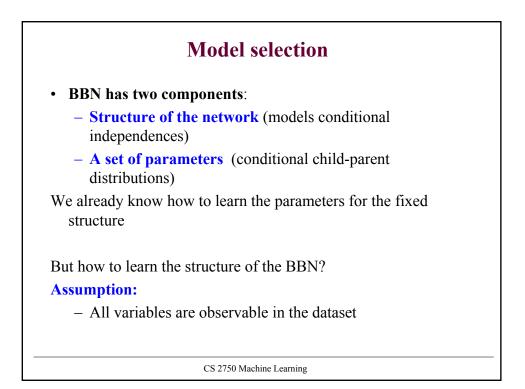




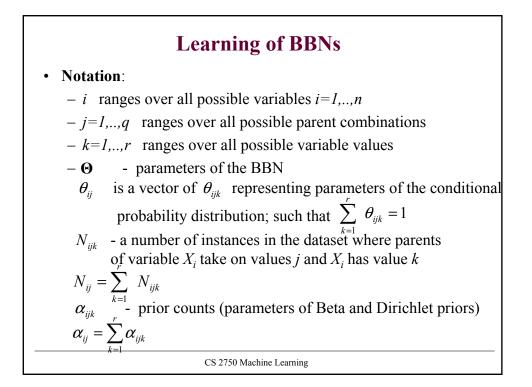








Learning the structure Criteria we can choose to score the structure S **Marginal likelihood** maximize $P(D | S, \xi)$ ξ - represents the prior knowledge **Posterior probability** maximize $P(S | D, \xi)$ $P(S | D, \xi) = \frac{P(D | S, \xi)P(S | \xi)}{P(D | \xi)}$ How to compute marginal likelihood $P(D | S, \xi)$?



Marginal likelihood

• Integrate over all possible parameter settings

$$P(D \mid S, \xi) = \int_{\Theta} P(D \mid S, \Theta, \xi) p(\Theta \mid S, \xi) d\Theta$$

• Using the assumption of parameter and sample independence

$$P(D \mid S, \xi) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$$

• We can use log-likelihood score instead

$$\log P(D \mid S, \xi) = \sum_{i=1}^{n} \left\{ \sum_{j=1}^{q_i} \log \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} + \sum_{k=1}^{r_i} \log \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})} \right\}$$

Score is decomposable along variables !!!

CS 2750 Machine Learning

Trick to compute the marginal likelihood • Integrate over all possible parameter settings $P(D | S, \xi) = \int_{\Theta} P(D | S, \Theta, \xi) p(\Theta | S, \xi) d\Theta$ • Posterior of parameters, given data and the structure $p(\Theta | D, S, \xi) = \frac{P(D | \Theta, S, \xi) p(\Theta | S, \xi)}{P(D | S, \xi)}$ **Trick** $P(D | S, \xi) = \frac{P(D | \Theta, S, \xi) p(\Theta | S, \xi)}{p(\Theta | D, S, \xi)}$ • Gives the solution $P(D | S, \xi) = \prod_{i=1}^{n} \prod_{j=1}^{q_i} \frac{\Gamma(\alpha_{ij})}{\Gamma(\alpha_{ij} + N_{ij})} \prod_{k=1}^{r_i} \frac{\Gamma(\alpha_{ijk} + N_{ijk})}{\Gamma(\alpha_{ijk})}$ CS 2750 Machine Learning

