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CS 2750 Machine Learning

CS 2750 Machine Learning
Lecture 14

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Learning Bayesian belief networks

CS 2750 Machine Learning

Administration

Midterm:  Monday, March 17, 2003
• In class
• Closed book
• Material covered by Wednesday, March 12, including 

learning parameters of the BBNs but not the structure 
learning

• Last year midterm is posted on the web

No new homework
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CS 2750 Machine Learning

Learning probability distribution

Basic settings:
• A set of random variables 
• A model of the distribution over variables in X

with parameters 
• Data

Objective: find parameters         that describe  the data the best 

Learning Bayesian belief networks:
– parameterizations as defined by the structure of  network
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Learning of BBN

Learning.
• Learning of parameters of conditional probabilities 
• Learning of the network structure
Variables:
• Observable – values present in every data sample
• Hidden – they values are never observed in data
• Missing values – values sometimes present, sometimes 

not

Next: All variables are observable 
1. Learning of  parameters of BBN
2. Learning of the model (BBN structure)
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Learning of parameters of BBN

• Idea: decompose the estimation problem for the full joint 
over a large number of variables to a set of smaller estimation 
problems corresponding to parent-variable conditionals.  

• Example: Assume A,E,B are binary with True, False values

• Assumption that enables the decomposition: parameters of 
conditional distributions are independent 

B E

A

P(A|B=T,E=T)

P(A|B,E)
P(A|B=T,E=F)

P(A|B=F,E=T)

P(A|B=F,E=F)

4  estimation problems

CS 2750 Machine Learning

Estimates of parameters of BBN

• Two assumptions that permit the decomposition:
– Sample independence

– Parameter independence
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Parameters of each conditional (one for every assignment of
values to parent variables) can be learned independently
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Learning of BBN parameters. Example.

Example:

Pneumonia

CoughFeverPaleness High WBC

P(Pneumonia)

?         ?   

T         F

Pn T      F

T        ?      ?
F        ?      ?

P(HWBC|Pneum)

P(Cough|Pneum)P(Fever|Pneum)P(Palen|Pneum)

?         ?         ?         
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal  Fev Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC
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Estimates of parameters of BBN

• Much like multiple coin toss or roll of a dice problems. 
• A “smaller” learning problem corresponds to the learning of 

exactly one conditional distribution 
• Example:

• Problem: How to pick the data to learn?

)|( TPneumoniaFever =P
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Estimates of parameters of BBN

Much like multiple  coin toss or roll of a dice problems. 
• A “smaller” learning problem corresponds to the learning of 

exactly one conditional distribution 
Example:

Problem: How to pick the data to learn?
Answer:

1. Select data points with Pneumonia=T
(ignore the rest)

2. Focus on (select) only values of the random variable 
defining the distribution  (Fever)

3. Learn the parameters of the conditional the same way as 
we learned the parameters of the biased coin or dice

)|( TPneumoniaFever =P
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Learning of BBN parameters. Example.

Learn:
Step 1: Select data points with Pneumonia=T

Pal  Fev Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC

CS 2750 Machine Learning

Learning of BBN parameters. Example.

Learn:
Step 1: Ignore the rest

Pal  Fev Cou HWB  Pneu
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       T     T      T       T
F       T     F      T        T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 2: Select values of the random variable defining the 

distribution of Fever

Pal  Fev Cou HWB  Pneu
F      F T      T        T
F       F T      F        T
F      T T      T       T
T       T T      T       T
F       T  F      T        T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 2: Ignore the rest

Fev
F
F
T
T
T

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:
Step 3a: Learning the ML estimate

Fev
F
F
T
T
T

)|( TPneumoniaFever =P

)|( TPneumoniaFever =P

0.6     0.4   

T         F

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Bayesian learning.

Learn:
Step 3b: Learning the Bayesian estimate
Assume the prior

Fev
F
F
T
T
T

Posterior:

)|( TPneumoniaFever =P

Pneumonia

CoughFeverPaleness High WBC

)4,3(~| BetaTPneumoniaFever =θ

)6,6(~| BetaTPneumoniaFever =θ
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Naïve Bayes model

A special (simple) Bayesian belief network
• used as a generative classifier model

– Class variable Y
– Attributes are independent given Y

Learning: ML, Bayesian estimates of parameters
Classification: given x we need to determine the class

– Choose the class with the maximum posterior

Class Y
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Naïve Bayes with Gaussians distributions

Y

X

)(YpGenerative classification model

),...3(),2(),1( === YpYpYp
1. Priors on classes
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Before: Joint class conditional densities (for x)

Now: Naïve Bayes - independent class conditional densities
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Naïve Bayes with Gaussians distributions

How to learn the generative model  

),...3(),2(),1( === YpYpYp
1. Priors on classes

2. Class conditional densities
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Model selection

• BBN has two components:
– Structure of the network (models conditional 

independences)
– A set of parameters (conditional child-parent 

distributions)
We already know how to learn the parameters for the fixed 

structure

But how to learn the structure of the BBN?
Assumption:

– All variables are observable in the dataset
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Learning the structure
Criteria we can choose to score the structure S
• Marginal likelihood

• Posterior probability

),|( ξSDPmaximize

ξ - represents the prior knowledge

),|( ξDSPmaximize
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How to compute marginal likelihood                      ?),|( ξSDP
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Learning of BBNs
• Notation:

– i ranges over all possible variables i=1,..,n
– j=1,..,q ranges over all possible parent combinations
– k=1,..,r ranges over all possible variable values
– - parameters of the BBN

ijθ is a vector of         representing parameters of the conditional ijkθ

probability distribution; such that 1
1
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θ

ijkN - a number of instances in the dataset where parents
of variable Xi take on values j and Xi has value k
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ijkα - prior counts (parameters of Beta and Dirichlet priors)
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Marginal likelihood

• Integrate over all possible parameter settings

• Using the assumption of parameter and sample independence

• We can use log-likelihood score instead
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Score is decomposable along variables !!!
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Trick to compute the marginal likelihood

• Integrate over all possible parameter settings

• Posterior of parameters, given data and the structure

• Gives the solution
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Learning the structure

• Likelihood of data for the BBN (structure and parameters)

measures the goodness of fit of the BBN to data

• Marginal likelihood (for the structure only)

• Does not measure only a goodness of fit. It is: 
– different for structures of different complexity
– Incorporates preferences towards simpler structures, 

implements Occam’s razor !!!!

),,|( ξΘSDP

),|( ξSDP
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Occam’s Razor

• Why there is a preference towards simpler structures ?

Interpretation: in more complex structures there are more ways 
how parameters can be set badly
– The numerator: count of good assignments
– The denominator: count of all assignments
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Approximations of probabilistic scores

Approximations of the marginal likelihood and posterior scores 
• Information based measures

– Akaike criterion
– Bayesian information criterion (BIC)
– Minimum description length (MDL)

• Reflect the tradeoff between the fit to data and preference 
towards simpler structures

Example: Akaike criterion.      
Maximize:

Maximize:

compl(S)),,|(log)( −Θ= ξMLSDPSscore
Bayesian information criterion (BIC)

logN compl(S)
2
1),,|(log)( −Θ= ξMLSDPSscore
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Optimizing the structure

Finding the best structure is a combinatorial optimization
problem

• A good feature: the score is decomposable along variables:

Algorithm idea: Search the space of structures using local 
changes (additions and deletions of a link) 

Advantage:
– we do not have to compute the whole score from scratch
– Recompute the partial score for the affected variable 
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Optimizing the structure. Algorithms

• Greedy search
– Start from structure with no links
– Add a link that yields the best score improvement

• Metropolis algorithm (with simulated annealing)
– Local additions and deletions
– Avoids being trapped in “local” optimal 


