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CS 2750 Machine Learning
Lecture 13

Milos Hauskrecht
milos@cs.pitt.edu
5329 Sennott Square

Bayesian belief networks.
Inference.

CS 2750 Machine Learning

Midterm exam

Monday, March 17, 2003
• In class
• Closed book
• Material covered by Wednesday, March 12
• Last year midterm will be posted on the web
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Project proposals

Due: Monday, March 24, 2002
• 1-2 pages long
Proposal 
• Written proposal:

1. Outline of a learning problem, type of data you have 
available. Why is the problem important?

2. Learning methods you plan to try and implement for the 
problem.  References to previous work.

3. How do you plan to test, compare learning approaches
4. Schedule of work (approximate timeline of work)

• Short 5 minute PPT presentation summarizing  points  1-4

CS 2750 Machine Learning

Modeling uncertainty with probabilities

• Full joint distribution: joint distribution over all random 
variables defining the domain
– it is sufficient to represent the complete domain and to do 

any type of probabilistic  inferences 

Problems:
– Space complexity. To store full joint distribution requires 

to remember             numbers.
n – number of random variables, d – number of values

– Inference complexity. To compute some queries requires        
.            steps. 

– Acquisition problem. Who is going to define all of the 
probability entries?       

 )(dnO

 )(dnO
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Pneumonia example. Complexities.

• Space complexity. 
– Pneumonia (2 values: T,F), Fever (2: T,F), Cough (2: T,F), 

WBCcount (3: high, normal, low), paleness (2: T,F)
– Number of assignments: 2*2*2*3*2=48
– We need to define at least 47 probabilities.

• Time complexity.
– Assume we need to compute the probability of 

Pneumonia=T from the full joint

– Sum over 2*2*3*2=24 combinations

== )( TPneumoniaP
∑ ∑ ∑ ∑
∈ ∈ = ∈

=====
FTi FTj lnhk FTu

uPalekWBCcountjCoughiFeverP
, , ,, ,
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Bayesian belief networks (BBNs)

Bayesian belief networks.
• Represent the full joint distribution over the variables more 

compactly with a smaller number of parameters. 
• Take advantage of conditional and marginal independences

among random variables

• A and B are independent

• A and B are conditionally independent given C
)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)

1. Directed acyclic graph
• Nodes = random variables
• Links = missing links encode independences.

CS 2750 Machine Learning

Bayesian belief network.

2. Local conditional distributions 
• relate variables and their parents

Burglary Earthquake

JohnCalls MaryCalls

Alarm

P(B) P(E)

P(A|B,E)

P(J|A) P(M|A)
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Bayesian belief network.

Burglary Earthquake

JohnCalls MaryCalls

Alarm

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(B)

0.001 0.999

P(E)

0.002  0.998

A   T      F

T    0.90  0.1
F    0.05  0.95

A      T      F

T    0.7    0.3
F    0.01   0.99

P(A|B,E)

P(J|A) P(M|A)

T        F T         F

CS 2750 Machine Learning

Bayesian belief networks (general)

Two  components:
• Directed acyclic graph

– Nodes correspond to random variables 
– (Missing) links encode independences

• Parameters
– Local conditional probability distributions

for every variable-parent configuration

))(|( ii XpaXP

A

B

MJ

E),( SSB Θ=

)( iXpa - stand for parents of  Xi
Where:

B   E T       F

T   T 0.95   0.05
T   F     0.94   0.06
F   T     0.29   0.71
F   F     0.001 0.999

P(A|B,E)
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Full joint distribution in BBNs

Full joint distribution is defined in terms of local conditional 
distributions (obtained via the chain rule):

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Example:

)|()|(),|()()( TAFMPTATJPTETBTAPTEPTBP =========

Then its probability is:

Assume the following assignment
of values to random variables

FMTJTATETB ===== ,,,,

CS 2750 Machine Learning

Bayesian belief networks (BBNs)

Bayesian belief networks 
• Represent the full joint distribution over the variables more 

compactly using the product of local conditionals. 
• But how did we get to local parameterizations?
Answer:
• Graphical structure encodes conditional and marginal 

independences among random variables
• A and B are independent
• A and B are conditionally independent given C

• The graph structure implies the decomposition !!!

)()(),( BPAPBAP =

)|()|()|,( CBPCAPCBAP =
)|(),|( CAPBCAP =
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Independences in BBNs
3 basic independence structures:

Burglary

JohnCalls

Alarm

Burglary

Alarm

Earthquake

JohnCalls

Alarm

MaryCalls

1. 2. 3.

CS 2750 Machine Learning

Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

Rewrite the full joint probability using the 
product rule:
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Full joint distribution in BBNs

M

A

B

J

E

====== ),,,,( FMTJTATETBP

)()(),|()|()|( TEPTBPTETBTAPTAFMPTATJP ==========

),,,(),,,|( FMTATETBPFMTATETBTJP ==========
),,,()|( FMTATETBPTATJP =======

),,(),,|( TATETBPTATETBFMP =======
),,()|( TATETBPTAFMP =====

),(),|( TETBPTETBTAP =====
)()( TEPTBP ==

Rewrite the full joint probability using the 
product rule:

CS 2750 Machine Learning

Parameters:
full joint:

BBN:

Parameter complexity problem

• In the BBN the full joint distribution is expressed as a product
of conditionals (of smaller) complexity

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

))(|(),..,,(
,..1

21 ∏
=

=
ni

iin XpaXXXX PP

322 5 =

20)2(2)2(22 23 =++

Parameters to be defined:
full joint:

BBN:

3112 5 =−

10)1(2)2(22 2 =++
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Model acquisition problem

The structure of the BBN typically reflects causal relations
• BBNs are also sometime referred to as causal networks
• Causal structure is very intuitive in many applications domain 

and it is relatively easy to obtain from the domain expert

Probability parameters of BBN correspond to conditional 
distributions relating a random variable and its parents only

• Their complexity much smaller than the full joint
• Easier to come up (estimate) the probabilities from expert or 

automatically by learning from data

CS 2750 Machine Learning

BBNs built in practice

• In various areas:
– Intelligent user interfaces (Microsoft)
– Troubleshooting, diagnosis of a technical device
– Medical diagnosis:

• Pathfinder (Intellipath)
• CPSC
• Munin
• QMR-DT

– Collaborative filtering
– Military applications
– Insurance, credit applications
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Diagnosis of car engine

• Diagnose the engine start problem 

CS 2750 Machine Learning

Car insurance example

• Predict claim costs (medical, liability) based on application data
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(ICU) Alarm network

CS 2750 Machine Learning

CPCS
• Computer-based Patient Case Simulation system (CPCS-PM) 

developed by Parker and Miller (at University of Pittsburgh)
• 422 nodes and 867 arcs
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QMR-DT 

• Medical diagnosis in internal medicine
– Bipartite network of disease/findings relations
– Derived from the Internist-1/QMR knowledge base

CS 2750 Machine Learning

Inference in Bayesian networks 
• BBN models compactly the full joint distribution by taking 

advantage of existing independences between variables
– Smaller number of parameters

• But we are interested in solving various inference tasks:
– Diagnostic task. (from effect to cause)

– Prediction task.  (from cause to effect)

– Other probabilistic queries (queries on joint distributions).

• Question: Can we take advantage of independences to construct 
special algorithms and speedup the inference?

)|( TJohnCallsBurglary =P

)|( TBurglaryJohnCalls =P

)( AlarmP
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Inference in Bayesian network
• Bad news: 

– Exact inference problem in BBNs is NP-hard (Cooper)
– Approximate inference is NP-hard (Dagum, Luby)

• But very often we can achieve significant improvements
• Assume our Alarm network

• Assume we want to compute:

Burglary

JohnCalls

Alarm

Earthquake

MaryCalls

)( TJP =

CS 2750 Machine Learning

Inference in Bayesian networks
Computing:
Approach 1. Blind approach.
• Sum out all un-instantiated variables from the full joint, 
• express the joint distribution as a product of conditionals

Computational cost:
Number of  additions: 15
Number of products: 16*4=64

== )( TJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

),,,,(
, , , ,

mMTJaAeEbBP
FTb FTe FTa FTm

====== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈

)( TJP =



14

CS 2750 Machine Learning

Inference in Bayesian networks
Approach 2. Interleave sums and products
• Combines sums and product in a smart way (multiplications 

by constants can be taken out of the sum)

Computational cost:
Number of  additions: 1+ 2*(1)+2*(1+2*(1))=9
Number of products: 2*(2+2*(1)+2*(2*(1)))=16

== )( TJP

)](),|()[()|()|(
,, . ,

eEPeEbBaAPbBPaAmMPaATJP
FTeFTb FTa FTm

========== ∑∑ ∑ ∑
∈∈ ∈ ∈

]])(),|()[()][|()[|(
, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

)()(),|()|()|(
, , , ,

eEPbBPeEbBaAPaAmMPaATJP
FTb FTe FTa FTm

========== ∑ ∑ ∑ ∑
∈ ∈ ∈ ∈
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Inference in Bayesian networks

• The smart interleaving of sums and products can help us to 
speed up the computation of joint probability queries

• What if we want to compute:

• A lot of shared computation
– Smart cashing of results can save the time for more queries

),( TJTBP ==

=== ),( TJTBP

])](),|()[()][|()[|(
, ,,
∑ ∑∑
∈ ∈∈

==========
FTm FTeFTa

eEPeETBaAPTBPaAmMPaATJP

== )( TJP

]])(),|()[()][|()[|(
, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP
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Inference in Bayesian networks

• The smart interleaving of sums and products can help us to 
speed up the computation of joint probability queries

• What if we want to compute:

• A lot of shared computation
– Smart cashing of results can save the time if more queries

),( TJTBP ==

=== ),( TJTBP

== )( TJP
]])(),|()[()][|()[|(

, , ,,
∑ ∑ ∑∑
∈ ∈ ∈∈

==========
FTm FTb FTeFTa

eEPeEbBaAPbBPaAmMPaATJP

])](),|()[()][|()[|(
, ,,
∑ ∑∑
∈ ∈∈

==========
FTm FTeFTa

eEPeETBaAPTBPaAmMPaATJP
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Inference in Bayesian networks

• When cashing of results becomes handy?
• What if we want to compute a diagnostic query:

• Exactly probabilities we have just compared !!
• There are other queries when cashing and ordering of sums 

and products can be shared and saves computation

• General technique: Variable elimination

)(
),()|(

TJP
TJTBPTJTBP

=
=====

),(
)(

),()|( TJB
TJP
TJBTJB ==

=
=== PPP α
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Inference in Bayesian networks

• General idea of variable elimination 

]])(),|()[()][|()][|([
, , ,, ,
∑ ∑ ∑∑ ∑
∈ ∈ ∈∈ ∈

==========
FTm FTb FTeFTa FTj

eEPeEbBaAPbBPaAmMPaAjJP

== 1)(TrueP

)(af J )(af M ),( baf E

)(af B
A

J M B

E

Variable order:

Results cashed in
the tree structure

CS 2750 Machine Learning

Inferences in Bayesian network

• Exact inference algorithms:
– Symbolic inference (D’Ambrosio)
– Message passing algorithm (Pearl)
– Clustering and joint tree approach (Lauritzen, 

Spiegelhalter) 
– Arc reversal (Olmsted, Schachter)

• Approximate inference algorithms:
– Monte Carlo methods:

• Forward sampling, Likelihood sampling
– Variational methods 


