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Machine  Learning

CS 2750 Machine Learning

Administration
Study material
• Handouts, your notes and course readings
• Primary textbook:

– Duda, Hart, Stork. Pattern classification. 2nd edition. J 
Wiley and Sons, 2000.

• Recommended book:
– Friedman, Hastie, Tibshirani. Elements of statistical 

learning. Springer, 2001.
• Other books:

– C. Bishop.  Neural networks for pattern recognition. Oxford 
U. Press, 1996.

– T. Mitchell. Machine Learning. McGraw Hill, 1997
– J. Han, M. Kamber. Data Mining. Morgan Kauffman, 2001. 
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Administration
• Lectures:

– Random short quizzes testing the understanding of 
basic concepts from previous lectures

• Homeworks: weekly
– Programming tool: Matlab (CSSD machines and labs)
– Matlab Tutorial: next week

• Exams:
– Midterm (March)

• Final project: 
– Proposals (early March)
– Written report + Oral presentation

(end of the semester)

CS 2750 Machine Learning

Tentative topics

• Concept learning.
• Density estimation. 
• Linear models for regression and classification. 
• Multi-layer neural networks.
• Support vector machines. Kernel methods.
• Learning Bayesian networks.
• Clustering. Latent variable models.
• Dimensionality reduction. Feature extraction.
• Ensemble methods. Mixture models. Bagging and boosting.
• Hidden Markov models.
• Reinforcement learning
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Machine Learning

• The field of machine learning studies the design of computer 
programs (agents) capable of learning from past experience or 
adapting to changes in the environment

• The need for building agents capable of learning is everywhere 
– predictions in medicine, 
– text and web page classification,  
– speech recognition,
– image/text retrieval, 
– commercial software 

CS 2750 Machine Learning

Learning

Learning process:
Learner (a computer program) processes data D representing 
past experiences and tries to either develop an appropriate 
response to future data, or describe in some meaningful way 
the data seen 

Example:
Learner sees a set of patient cases (patient records) with 
corresponding diagnoses. It can either try:
– to predict the presence of a disease for future patients
– describe the dependencies between diseases, symptoms  
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Types of learning
• Supervised learning

– Learning mapping between input x and desired output y
– Teacher gives me y’s for the learning purposes

• Unsupervised learning
– Learning relations between data components
– No specific outputs given by a teacher

• Reinforcement learning
– Learning mapping between input x and desired output y
– Critic does not give me y’s but instead a signal 

(reinforcement) of how good my answer was
• Other types of learning:

– explanation-based learning, etc.

CS 2750 Machine Learning

Supervised learning

Data:                                     a set of n examples                                 

is input vector, and y is desired output (given by a teacher)

Objective: learn the mapping 
s.t.

Two types of problems:
• Regression: X discrete or continuous

Y is continuous
• Classification: X discrete or continuous

Y is discrete
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Supervised learning examples

• Regression:  Y is continuous

Debt/equity
Earnings company stock price
Future product orders

• Classification: Y is discrete

Handwritten digit (array of 0,1s)

Label “3”

CS 2750 Machine Learning

Unsupervised learning

• Data:
vector of values

No target value (output) y 

• Objective:
– learn relations between samples, components of samples

Types of problems:
• Clustering

Group together “similar” examples, e.g. patient cases
• Density estimation

– Model probabilistically the population of samples

},..,,{ 21 ndddD =
iid x=
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Unsupervised learning example. 

• Density estimation. We want to build the probability model of 
a population from which we draw samples 
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Unsupervised learning. Density estimation

• A probability density of a point in the two dimensional space
– Model used here: Mixture of Gaussians
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Reinforcement learning

• We want to learn:
• We see samples of x but not y 
• Instead of y we get a feedback (reinforcement) from a critic

about how good our output was 

• The goal is to select outputs that lead to the best reinforcement

Learner
input sample output

Critic

reinforcement

YXf →:

CS 2750 Machine Learning

Learning
• Assume we see examples of pairs (x , y) and we want to learn 

the mapping                      to predict future ys for values of x
• We get the data what should we do?

YXf →:
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Learning bias
• Problem: many possible functions                      exists for 

representing the mapping between x and y                      
• Which one to choose?  Many examples still unseen!

YXf →:
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CS 2750 Machine Learning

Learning bias
• Problem is easier when we make an assumption about the 

model, say,

• Restriction to a linear model is an example of learning bias 

ε++= baxxf )(
- random (normally distributed) noise),0( σε N=
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Learning bias
• Bias provides the learner with some basis for choosing among 

possible representations of the function.
• Forms of bias: constraints, restrictions, model preferences
• Important: There is no learning without a bias!
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Learning bias
• Choosing a parametric model or a set of models is not enough 

Still too many functions
– One for every pair of parameters a, b

ε++= baxxf )(
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Fitting the data to the model
• We are interested in finding the best set of model parameters
Objective: Find the set of parameters that:
• reduces the misfit between the model and observed data
• Or, (in other words) that explain the data the best
Error function:

Measure of misfit between the data and the model
• Examples of error functions:

– Average square error

– Average misclassification error
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Fitting the data to the model
• Linear regression 

– Least squares fit with the linear model 
– minimizes
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Typical learning

Three basic steps:
• Select a model or a set of models (with parameters)

E.g.
• Select the error function to be optimized

E.g.

• Find the set of parameters optimizing the error function
– The model and parameters with the smallest error represent 

the best fit of the model to the data

But there are problems one must be careful about …
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Learning
Problem
• We fit the model based on past experience (past examples seen)
• But ultimately we are interested in learning the mapping that 

performs well on the whole population of examples
Training data: Data used to fit the parameters of the model
Training error:

True (generalization) error (over the whole unknown 
population):

Training error tries to approximate the true error !!!!
Does a good training error imply a good generalization error ?
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Overfitting

• Assume we have a set of 10 points and we consider 
polynomial functions as our possible models

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-8

-6

-4

-2

0

2

4

6

8

10

CS 2750 Machine Learning

Overfitting

• Fitting a linear function with the square error
• Error is nonzero
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Overfitting
• Linear vs. cubic polynomial
• Higher order polynomial leads to a better fit, smaller error 
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Overfitting

• Is it always good to minimize the error of the observed data?
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Overfitting
• For 10 data points, the degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.
• Is it always good to minimize the training error?  
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Overfitting
• For 10 data points, degree 9 polynomial gives a perfect fit 

(Lagrange interpolation).  Error is zero.
• Is it always good to minimize the training error?  NO !!
• More important: How do we perform on the unseen data?
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Overfitting
Situation when the training error is low and the generalization 

error is high. Causes of the phenomenon:
• Model with a large number of parameters (degrees of freedom)
• Small data size (as compared to the complexity of the model)

-1.5 -1 -0.5 0 0.5 1 1.5

-8

-6

-4

-2

0

2

4

6

8

10

CS 2750 Machine Learning

How to evaluate the learner’s performance?
• Generalization error is the true error for the population of 

examples we would like to optimize

• But it cannot be computed exactly
• Sample mean only approximates the true mean

• Optimizing (mean) training error can lead to the overfit, 
i.e.  training error may not reflect properly the generalization 
error

• So how to test the generalization error? 
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• Generalization error is the true error for the population of 
examples we would like to optimize

• Sample mean only approximates it
• How to measure the generalization error? 
• Two ways:

– Theoretical: Law of large numbers
• statistical bounds on the difference between true and 

sample mean errors
– Practical: Use a separate data set with m data samples to 

test
• (Mean) test error 2
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1. Take a dataset D and divide it into:
• Training data set 
• Testing data set 

2. Use the training set and your favorite ML algorithm to train 
the learner

3. Test (evaluate) the learner on the testing data set

• The results on the testing set can be used to compare different 
learners powered with different models and learning algorithms

Basic experimental setup to test the learner’s 
performance
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Solutions for overfitting

How to make the learner avoid overfitting?
• Assure sufficient number of samples in the training set

– May not be possible
• Hold some data out of the training set = validation set

– Train (fit) on the training set (w/o data held out);
– Check for the generalization error on the validation set, 

choose the model based on the validation set error
(cross-validation techniques)

• Regularization (Occam’s Razor)
– Penalize for the model complexity (number of parameters)
– Explicit preference towards simple models

CS 2750 Machine Learning

Design of a learning system (first view)

Data

Model selection

Learning

Application
or Testing
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Design of a learning system.

1. Data:
2. Model selection:
• Select a model or a set of models (with parameters)

E.g.
• Select the error function to be optimized

E.g.

3. Learning:
• Find the set of parameters optimizing the error function

– The model and parameters with the smallest error 
4. Application:
• Apply the learned model

– E.g. predict ys for new inputs x using learned
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