
1

M. HauskrechtCS 1571 Intro to AI

CS 1571 Introduction to AI
Lecture 4

Milos Hauskrecht

milos@cs.pitt.edu

5329 Sennott Square

Uninformed search methods

M. HauskrechtCS 1571 Intro to AI

Announcements

Homework assignment 1 is out

• Due on Thursday, September 11, 2014 before the lecture

• Theoretical and programming part:

– Programming part involves Puzzle 8 problem.

Course web page:

http://www.cs.pitt.edu/~milos/courses/cs1571/

2

M. HauskrechtCS 1571 Intro to AI

Search

• Search: The process of exploration of the search space

• Design goal: We want the search to be as efficient as possible

• The efficiency of the search depends on:

– The search space and its size

– Method used to explore (traverse) the search space

– Condition to test the satisfaction of the search objective

M. HauskrechtCS 1571 Intro to AI

Uninformed search methods

• rely only on the information available in the problem
definition

– Breadth first search

– Depth first search

– Iterative deepening

– Bi-directional search

For the minimum cost path problem:

– Uniform cost search

3

M. HauskrechtCS 1571 Intro to AI

Breadth first search (BFS)

• The shallowest node is expanded first

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

• Expand the shallowest node first

• Implementation: put successors to the end of the queue (FIFO)

Arad
Aradqueue

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

4

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Zerind
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

OradeaArad

Sibiu
Timisoara
Arad
Oradea

queue

Fagaras Rimnicu
Vilcea

OradeaArad Arad Lugoj

5

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad

Timisoara
Arad
Oradea
Arad
Oradea
Fagaras
Romnicu Vilcea

queue

Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Breadth-first search

Arad

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

Arad
Oradea
Arad
Oradea
Fagaras
Romnicu Vilcea
Arad
Lugoj

queue

6

M. HauskrechtCS 1571 Intro to AI

Properties of breadth-first search

• Completeness: ?

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?

– For complexity use:

• b – maximum branching factor

• d – depth of the optimal solution

• m – maximum depth of the search tree

M. HauskrechtCS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?

7

M. HauskrechtCS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity: ?

• Memory (space) complexity: ?

M. HauskrechtCS 1571 Intro to AI

BFS – time complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes: ?

d+1 2d+1 (bd+1)

8

M. HauskrechtCS 1571 Intro to AI

BFS – time complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes:)(1dbO

d+1 2d+1 (bd+1)

Expanded nodes:)(dbO

M. HauskrechtCS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity:

exponential in the depth of the solution d

• Memory (space) complexity: ?

)(1 2 dd bObbb

9

M. HauskrechtCS 1571 Intro to AI

BFS – memory complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes: ?

d+1 2d+1 (bd+1)

• Count nodes kept in the tree structure
or in the queue

M. HauskrechtCS 1571 Intro to AI

BFS – memory complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes:)(1dbO

d+1 2d+1 (bd+1)

Expanded nodes:)(dbO

• Count nodes kept in the tree structure
or in the queue

10

M. HauskrechtCS 1571 Intro to AI

Properties of breadth-first search

• Completeness: Yes. The solution is reached if it exists.

• Optimality: Yes, for the shortest path.

• Time complexity:

exponential in the depth of the solution d

• Memory (space) complexity:

nodes are kept in the memory

)(1 2 dd bObbb

)(dbO

M. HauskrechtCS 1571 Intro to AI

BFS – time complexity

b

d

depth number of nodes

0 1

1 21=2

2

3

d

22=4

23=8

2d (bd)

Total nodes:)(1dbO

d+1 2d+1 (bd+1)

Expanded nodes:)(dbO

11

M. HauskrechtCS 1571 Intro to AI

Depth-first search (DFS)

• The deepest node is expanded first

• Backtrack when the path cannot be further expanded

M. HauskrechtCS 1571 Intro to AI

Depth-first search

• The deepest node is expanded first

• Implementation: put successors to the beginning of the queue

Arad Aradqueue

Zerind Sibiu Timisoara

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

12

M. HauskrechtCS 1571 Intro to AI

Depth-first search

Arad

Zerind Sibiu Timisoara

Zerind
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Depth-first search

Arad

Zerind Sibiu Timisoara

Oradea

Arad
Oradea
Sibiu
Timisoara

queue

Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

13

M. HauskrechtCS 1571 Intro to AI

Depth-first search

Arad

Zerind Sibiu Timisoara

Sibiu TimisoaraZerind

Note: Arad – Zerind – Arad cycle

Zerind
Sibiu
Timisoara
Oradea
Sibiu
Timisoara

queue

Oradea Fagaras Rimnicu
Vilcea

Arad OradeaArad Arad Lugoj

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: Does it always find the solution if it exists?

• Optimality: ?

• Time complexity: ?

• Memory (space) complexity: ?

14

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. Infinite loops can occur.

• Optimality: does it find the minimum length path ?

• Time complexity: ?

• Memory (space) complexity: ?

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. Infinite loops can occur.

Solution: prevent occurrence of infinite loops.

• Optimality: does it find the minimum length path ?

• Time complexity: ?

• Memory (space) complexity: ?

15

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No, if we permit infinite loops.

Yes, if we prevent them.

• Optimality: does it find the minimum length path ?

• Time complexity: ?

• Memory (space) complexity: ?

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
Yes, if we prevent them.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity: ?

• Memory (space) complexity: ?

16

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
Yes, if we prevent them.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity: assume a finite maximum tree depth m

• Memory (space) complexity: ?

M. HauskrechtCS 1571 Intro to AI

DFS – time complexity

b

m

depth number of nodes

0 1

1 21=2

2

3

m

22=4

23=8

2m-2m-d

Complexity:

d

d 2d

17

M. HauskrechtCS 1571 Intro to AI

DFS – time complexity

b

m

depth number of nodes

0 1

1 21=2

2

3

m

22=4

23=8

2m-2m-d

Complexity:)(mbO

d

d 2d

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
Yes, if we prevent them.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m

• Memory (space) complexity: ?

)(mbO

18

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
Yes, if we prevent them.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m

• Memory (space) complexity: ?

)(mbO

M. HauskrechtCS 1571 Intro to AI

DFS – memory complexity

b

depth number of nodes kept

0 1

19

M. HauskrechtCS 1571 Intro to AI

DFS – memory complexity

b

depth number of nodes kept

0 0

1 2 = b

M. HauskrechtCS 1571 Intro to AI

DFS – memory complexity

b

depth number of nodes kept

0 0

1 1 = (b-1)

2 2 = b

20

M. HauskrechtCS 1571 Intro to AI

DFS – memory complexity

b

m

depth number of nodes kept

0 0

1 1

2

3

m

1

1

2=b

Complexity:

M. HauskrechtCS 1571 Intro to AI

DFS – memory complexity

b

m

depth number of nodes kept

0 0

1 1=(b-1)

2

3

m

1= (b-1)

1 =(b-1)

2=b

Complexity:)(bmO

21

M. HauskrechtCS 1571 Intro to AI

DFS – memory complexity

b

m

depth number of nodes

0 1

1 2 = b

2

3

m

2

2

2

Total nodes:)(bmO

Count nodes kept in the tree structure or the queue

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. If we permit infinite loops.
Yes, if we prevent them.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m

• Memory (space) complexity:

linear in the maximum depth of the search tree m

)(mbO

)(bmO

22

M. HauskrechtCS 1571 Intro to AI

Properties of depth-first search

• Completeness: No. If we permit infinite loops
Yes, if we prevent them.

• Optimality: No. Solution found first may not be the shortest
possible.

• Time complexity:

exponential in the maximum depth of the search tree m

• Memory (space) complexity:

the tree size we need to keep is linear in the maximum depth
of the search tree m

)(mbO

)(bmO

M. HauskrechtCS 1571 Intro to AI

Limited-depth depth first search

• How to eliminate infinite depth-first exploration?

• Put the limit (l) on the depth of the depth-first exploration

)(lbO

)(blO
l - is the given limit

• Time complexity:

• Memory complexity:

Limit l=2

Not explored

l

23

M. HauskrechtCS 1571 Intro to AI

Limited depth depth-first search

• Avoids pitfalls of depth first search

• Use cutoff on the maximum depth of the tree

• Problem: How to pick the maximum depth?

• Assume: we have a traveler problem with 20 cities

• How to pick the maximum tree depth?

M. HauskrechtCS 1571 Intro to AI

Limited depth depth-first search

• Avoids pitfalls of depth first search

• Use cutoff on the maximum depth of the tree
• Problem: How to pick the maximum depth?

• Assume: we have a traveler problem with 20 cities

– How to pick the maximum tree depth?

– We need to consider only paths of length < 20

• Limited depth DFS

• Time complexity:

• Memory complexity:
)(lbO

)(blO
l - is the limit

24

M. HauskrechtCS 1571 Intro to AI

Elimination of state repeats

While searching the state space for the solution we can encounter
the same state many times.

Question: Is it necessary to keep and expand all copies of states
in the search tree?

Two possible cases:

(A) Cyclic state repeats

(B) Non-cyclic state repeats A

A

B

B

Search tree

M. HauskrechtCS 1571 Intro to AI

Elimination of cycles

Case A: Corresponds to the path with a cycle

Question: Can the branch (path) in which the same state is visited
twice ever be a part of the optimal (shortest) path between the
initial state and the goal?

???

A

A

25

M. HauskrechtCS 1571 Intro to AI

Elimination of cycles

Case A: Corresponds to the path with a cycle
Question: Can the branch (path) in which the same state is visited

twice ever be a part of the optimal (shortest) path between the
initial state and the goal? No !!

Branches representing cycles cannot be the part of the shortest
solution and can be eliminated.

A

A

M. HauskrechtCS 1571 Intro to AI

Elimination of cycles

How to check for cyclic state repeats:
• Check ancestors in the tree structure
• Caveat: we need to keep the tree.
Do not expand the node with the state that is the same as the state

in one of its ancestors.

A

A

26

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from
the initial state

Question: Is one of the nodes nodeB-1, nodeB-2 better or
preferable?

B

B

Root of the search tree

nodeB-1

nodeB-2

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats

Case B: nodes with the same state are not on the same path from the
initial state

Question: Is one of the nodes nodeB-1, nodeB-2 better or
preferable?

Yes. nodeB-1 represents a shorter path from the initial state to B

B

B

Root of the search tree

nodeB-1

nodeB-2

27

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats

Conclusion: Since we are happy with the optimal solution
nodeB-2 can be eliminated. It does not affect the optimality of
the solution.

Problem: Nodes can be encountered in different order during
different search strategies.

B

B

Root of the search tree

nodeB-1

nodeB-2

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats with
BFS

Breadth FS is well behaved with regard to non-cyclic state
repeats: nodeB-1 is always expanded before nodeB-2

• Order of expansion determines the correct elimination strategy

• we can safely eliminate the node that is associated with the state
that has been expanded before

B

B

Root of the search tree

nodeB-1

nodeB-2

28

M. HauskrechtCS 1571 Intro to AI

Elimination of state repeats for the BFS

For the breadth-first search (BFS)

• we can safely eliminate all second, third, fourth, etc.
occurrences of the same state

• this rule covers both cyclic and non-cyclic repeats !!!

Implementation of all state repeat elimination through marking:

• All expanded states are marked

• All marked states are stored in a hash table

• Checking if the node has ever been expanded corresponds to the
mark structure lookup

Use hash table to implement marking

M. HauskrechtCS 1571 Intro to AI

Elimination of non-cyclic state repeats with
DFS

Depth FS: nodeB-2 is expanded before nodeB-1

• The order of node expansion does not imply correct elimination
strategy

• we need to remember the length of the path between nodes to
safely eliminate them

B

B

Root of the search tree

nodeB-1

nodeB-2

29

M. HauskrechtCS 1571 Intro to AI

Elimination of all state redundancies

• General strategy: A node is redundant if there is another
node with exactly the same state and a shorter path from the
initial state
– Works for any search method
– Uses additional path length information

Implementation: hash table with the minimum path value:
• The new node is redundant and can be eliminated if

– it is in the hash table (it is marked), and
– its path is longer or equal to the value stored.

• Otherwise the new node cannot be eliminated and it is entered
together with its value into the hash table. (if the state was in
the hash table the new path value is better and needs to be
overwritten.)

