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Binary classification:
• Naïve Bayes model
• Decision trees

CS 1571 Intro to AI

Administration

• Final exam:

– December 12, 2014 at 4:00-5:50pm 

– In SENSQ 5129

• Exam is:

– Closed-book

– Cumulative with more weight placed on the second part 
of the course

– Similar in format to the midterm exam:

• No programming questions

– Please bring your calculators 
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Supervised learning

Data:                                     a set of n examples                                 

is an input vector of size d

is the desired output (given by a teacher)

Objective: learn the mapping 

s.t.

• Regression: Y is continuous

Example: earnings, product orders       company stock price

• Classification: Y is discrete

Example: handwritten digit in binary form        digit label
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Discriminative classification model

• A classification model  is defined using

– discriminant functions

• Idea: 

– For each class i define a function            mapping

– When the decision on input x should be made choose the 
class with the highest value of

Two models covered: 

• Logistic regression 

where 

• Support vector machines
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Discriminant functions: review
• Assume a binary classification problem with classes 0 and 1

• Discriminant functions g0(x) and g1(x)

CS 1571 Introduction to AI

Decision boundary
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Naïve Bayes classifier

• A generative classification model: 

• models and learns the joint distribution of x and y 

• Calculates posterior probability:  

• Naïve Bayes model 

– simplifying assumption: All input attributes are 
conditionally independent of each other given the class. 
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Making class decision for the Naïve Bayes

Discriminant functions based on  posterior of a class

–the model chooses the class with better posterior probability

Alternative discriminant function based on likelihood of data: 
– chooses the class that explains the input data (x) better
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Learning of the Naïve Bayes classifier

Model: 

Learning 

= learning of parameters of the BBN:

– Class prior

– class conditional distributions:

• In practice class conditional distribution can have different 
models: e.g. one attribute can be modeled using the Bernoulli, 
the other as Gaussian density, or as a Poisson distribution
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CS 2750 Machine Learning

Decision trees

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region
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Decision trees

• An alternative approach to classification:

– Partition the input space to regions

– Regress or classify independently in every region
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CS 2750 Machine Learning

Decision trees

• Decision tree model:

– Splits the space recursively according to inputs in x

– Classify at the bottom of the tree
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Decision trees

• Decision tree model:

– Split the space recursively according to inputs in x

– Classify at the bottom of the tree
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Decision trees

• Decision tree model:

– Split the space recursively according to inputs in x

– Classify at the bottom of the tree
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Decision trees

• Decision tree model:

– Split the space recursively according to inputs in x
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Learning decision trees

How to construct /learn the decision tree?

• Top-bottom algorithm:

– Find the best split condition (quantified 

based on the impurity measure)

– Stops when no improvement possible

• Impurity measure I:

– measures how well are the two classes in the training data 
D separated …. I(D) 

– Ideally we would like to separate all 0s and 1

• Splits: finite or continuous value attributes

Continuous value attributes conditions: 5.03 x

x

t f
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Impurity measure

Let

Impurity measure I(D) 

• defines how well the classes are separated

• in general the impurity measure should satisfy:

– Largest when data are split evenly for attribute values

– Should be 0 when all data belong to the same class
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Impurity measures

• There are various impurity measures used in the literature

– Entropy based measure (Quinlan, C4.5)

– Gini measure (Breiman, CART)
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Impurity measures

• Gain due to split – expected reduction in the impurity 
measure (entropy example)
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Decision tree learning

• Greedy learning algorithm:

Repeat until no or small improvement in the purity

– Find the attribute with the highest gain

– Add the attribute to the tree and split the set accordingly

• Builds the tree in the top-down fashion

– Gradually expands the leaves of the partially built tree

• The method is greedy

– It looks at a single attribute and gain in each step

– May fail when the combination of attributes is needed to  
improve the purity (parity functions)
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Decision tree learning

• Limitations of greedy methods

Cases in which a combination of two or more attributes 
improves the impurity
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Decision tree learning

By reducing the impurity measure we can grow very large trees

Problem: Overfitting

• We may split and classify very well the training set, but we may 
do worse in terms of  the generalization error 

Solutions to the overfitting problem:

• Solution 1.

– Prune branches of the tree built in the first phase

– Use validation set to test for the overfit

• Solution 2. 

– Test for the overfit in the tree building phase

– Stop building the tree when performance on the validation set 
deteriorates 


