

Supervised learning
Data: $D = \{D_1, D_2,, D_n\}$ a set of <i>n</i> examples
$D_i = \langle \mathbf{x}_i, y_i \rangle$
$\mathbf{x}_i = (x_{i,1}, x_{i,2}, \cdots , x_{i,d})$ is an input vector of size d
y_i is the desired output (given by a teacher)
Objective: learn the mapping $f: X \to Y$
s.t. $y_i \approx f(\mathbf{x}_i)$ for all $i = 1,, n$
• Regression: Y is continuous
Example: earnings, product orders \rightarrow company stock price
Classification: Y is discrete
Example: handwritten digit in binary form \rightarrow digit label
CS 1571 Intro to AI

Extension to the linearly non-separable case Relax constraints with variables ξ_i ≥ 0 w^Tx_i + w₀ ≥ 1 - ξ_i for y_i = +1 w^Tx_i + w₀ ≤ -1 + ξ_i for y_i = -1 Error occurs if ξ_i ≥ 1, ∑_{i=1}ⁿ ξ_i is the upper bound on the number of errors Introduce a penalty for the errors minimize ||w||² / 2 + C∑_{i=1}ⁿ ξ_i Subject to constraints C - set by a user, larger C leads to a larger penalty for an error

Kernel function example

• Assume $\mathbf{x} = [x_1, x_2]^T$ and a feature mapping that maps the input into a quadratic feature set

$$\mathbf{x} \to \boldsymbol{\varphi}(\mathbf{x}) = [x_1^2, x_2^2, \sqrt{2}x_1x_2, \sqrt{2}x_1, \sqrt{2}x_2, 1]^T$$

• Kernel function for the feature space:

$$K(\mathbf{x'}, \mathbf{x}) = \boldsymbol{\varphi}(\mathbf{x'})^T \boldsymbol{\varphi}(\mathbf{x})$$

= $x_1^2 x_1'^2 + x_2^2 x_2'^2 + 2x_1 x_2 x_1' x_2' + 2x_1 x_1' + 2x_2 x_2' + 1$
= $(x_1 x_1' + x_2 x_2' + 1)^2$
= $(1 + (\mathbf{x}^T \mathbf{x}'))^2$

• The computation of the linear separation in the higher dimensional space is performed implicitly in the original input space

