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Binary classification:
Support Vector Machines

CS 1571 Intro to AI

Supervised learning

Data:                                     a set of n examples                                 

is an input vector of size d

is the desired output (given by a teacher)

Objective: learn the mapping 

s.t.

• Regression: Y is continuous

Example: earnings, product orders       company stock price

• Classification: Y is discrete

Example: handwritten digit in binary form        digit label
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Discriminant functions: review

• A classification model  is typically defined using

– discriminant functions

• Idea: 

– For each class i define a function

mapping

– When the decision on input x should be made choose the 
class with the highest value of

• Works for binary and multi-class classification
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Discriminant functions: review
• Assume a binary classification problem with classes 0 and 1

• Discriminant functions g0(x) and g1(x)

CS 1571 Introduction to AI

Decision boundary
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Logistic regression model: review

• Model for binary (2 class) classification

• Defined by discriminant functions:

• where
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Logistic
function
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is a logistic function

Logistic regression model.  Decision boundary

• Logistic regression model defines a linear decision boundary

Example: 2 classes (blue and red points)

CS 1571 Introduction to AI
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Decision boundary

An alternative way to define discriminant functions with a linear 
decision boundary

Class 1:

Class -1: 

00  wT xw

Decision boundary:
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Linearly separable classes

Linearly separable classes: 

There is a hyperplane

that separates training instances with no error

00  wT xw

Class  (+1)
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Class  (-1)
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Learning linearly separable sets

Finding weights for linearly 

separable classes: 

• Linear program (LP) solution

• It finds weights that satisfy 

the following constraints:

Property: if there is a hyperplane separating the examples, the 
linear program finds the solution
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Optimal separating hyperplane

• Problem: 

• There are multiple hyperplanes that separate the data points

• Which one to choose?  
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Optimal separating hyperplane

• Problem: multiple hyperplanes that separate the data exists

– Which one to choose?  

• Maximum margin choice: maximum distance of               

– where       is the shortest distance of a positive example 
from the hyperplane (similarly       for negative examples)
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Maximum margin hyperplane

• For the maximum margin hyperplane only examples on the 
margin matter (only these affect the distances)

• These are called support vectors
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Finding maximum margin hyperplanes

• Assume that examples in the training set are                 such 
that  

• Assume that all data satisfy:

• The inequalities can be combined as:

• Equalities define two hyperplanes:
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Finding the maximum margin hyperplane

• Geometrical margin:

– measures the distance of a point x from the hyperplane
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Width of the margin:
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Maximum margin hyperplane

• We want to maximize

• We do it by minimizing

– But we also need to enforce the constraints on points:
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Maximum margin hyperplane

• Solution: Incorporate constraints into the optimization

• Optimization problem (Lagrangian)

• Minimize with respect to               (primal variables)

• Maximize with respect to         (dual variables) 
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Max margin hyperplane solution

• Set derivatives to 0 (Kuhn-Tucker conditions)

• Now we need to solve for Lagrange parameters (Wolfe dual)

• Quadratic optimization problem: solution        for all i 
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Maximum margin solution

• The resulting parameter vector        can be expressed as:

• The parameter         is obtained from 

Solution properties

• for all points that are 

not on the margin

• The decision boundary:
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Support vector machines

• The decision boundary:

• Classification decision:
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Support vector machines: solution property

• Decision boundary defined by the set of support vectors SV 
and their alpha values 

– Support vectors = a subset of datapoints in the training 
data that define the margin 

• Classification decision:

• Note that we do not have to explicitly compute

– This will be important for the nonlinear (kernel) case
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Support vector machines: inner product

• Decision on a new x depends on the inner product between 
two examples

• The decision boundary:

• Classification decision:

• Similarly, the optimization depends on 
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Inner product of two vectors

• The decision boundary for the SVM and its optimization 
depend on inner product of two datapoints (vectors):
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Inner product of two vectors

• The decision boundary for the SVM and its optimization 
depend on the inner product of two data points (vectors):
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Inner product of two vectors

• The decision boundary for the SVM and its optimization 
depend on the inner product of two data points (vectors):

• The inner product is also equal

If the angle in between them is 0 then:

If the angle between them is 90 then: 

The inner product measures how similar the two vectors are
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Extension to a linearly non-separable case

• Idea: Allow some flexibility on crossing the separating 
hyperplane

CS 2750 Machine Learning

Extension to the linearly non-separable case

• Relax constraints with variables

• Error occurs  if             ,             is the upper bound on the 
number of errors 

• Introduce a penalty for the errors
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C – set by a user, larger C leads to a larger penalty for an error
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Support vector machines: solution

• The solution of the linearly non-separable case has the same 
properties as the linearly separable case.  

– The decision boundary is defined only by a set of support 
vectors (points that are on the margin or that cross the margin)

– The decision boundary and the optimization can be expressed 
in terms of the inner product in between pairs of examples
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Nonlinear decision boundary

So far we have seen how to learn a linear decision boundary
• But what if the linear decision boundary is not good. 
• How can we learn a non-linear decision boundaries with 

the SVM? 
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Nonlinear decision boundary

• The non-linear case can be handled by using a set of features. 
Essentially we map input vectors to (larger) feature vectors

– Note that feature expansions are typically high dimensional
• Examples: polynomial expansions 

• Given the nonlinear feature mappings, we can use the linear 
SVM on the expanded feature vectors

• Kernel function
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Nonlinear case

• The linear case requires to compute
• The non-linear case can be handled by using a set of features. 

Essentially we map input vectors to (larger) feature vectors

– Note that feature expansions are typically high dimensional
• Examples: polynomial expansions 

• Now we can use SVM formalism on feature vectors

• Kernel function
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Support vector machines: solution for 
nonlinear decision boundaries

• The decision boundary:

• Classification:

• Decision on a new x requires to compute  the kernel function 
defining the similarity between the examples

• Similarly, the optimization depends on the kernel
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Kernel trick

The non-linear case maps input vectors to (larger) feature space

• Note that feature expansions are typically high dimensional
– Examples: polynomial expansions 

• Kernel function defines the inner product in the expanded 
high dimensional feature vectors and let us use the SVM

• Problem: after expansion we need to perform inner products 
in a very high dimensional space

• Kernel trick:
– If we choose the kernel function wisely we can compute 

linear separation in the high dimensional feature space 
implicitly by working in the original input space !!!!
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Kernel function example

• Assume                         and a feature mapping that maps the input 
into a quadratic feature set

• Kernel function for the feature space:

• The computation of the linear separation in the higher dimensional 
space is performed implicitly in the original input space
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Kernel function example

Linear separator
in the feature space

Non-linear separator
in the input space
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Kernel functions

• Linear kernel

• Polynomial kernel

• Radial basis kernel
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Kernels

• Kernel – similarity between pairs of objects

• Kernels can be defined for more complex objects:

– Strings

– Graphs

– Images


