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• Density estimation
• Linear regression
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Density estimation
Data: 

Objective: try to estimate the underlying true probability 
distribution over variables       ,           ,  using examples in  D

Standard (iid) assumptions: Samples
• are independent of each other
• come from the same (identical) distribution (fixed          )
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Learning via parameter estimation

In this lecture we consider parametric density estimation

Basic settings:

• A set of random variables 

• A model of the distribution over variables in X

with parameters 

• Data

Objective: find parameters         that fit the data the best 

• What is the best set of parameters? 

– There are various criteria one can apply here.
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Parameter estimation. Basic criteria.

• Maximum likelihood (ML)

• Maximum a posteriori probability (MAP)
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes       such that 

• head

• tail

Model:  probability of a head
probability of a tail

Objective:

We would like to estimate the probability of a head

from data
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Parameter estimation.  Example.

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What would be your estimate of the probability of a head ?
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Parameter estimation.  Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What would be your choice of the probability of a head ?

Solution: use frequencies of occurrences to do the estimate

This is the maximum likelihood estimate of the parameter
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Probability of an outcome

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: we know the probability
Probability of an outcome of a coin flip

– Combines the probability of a head and a tail
– So that        is going to pick its correct probability 
– Gives               for
– Gives               for
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: a sequence of independent coin flips 

D = H H T H T H           (encoded as D= 110101)

What is the probability of observing the data sequence D:
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

 )1()1()|( DP
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

 )1()1()|( DP
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Probability of a sequence of outcomes.

Data: D a sequence of outcomes       such that 
• head

• tail
Model:  probability of a head

probability of a tail

Assume: a sequence of coin flips D = H H T H T H

encoded as D= 110101

What is the probability of observing a data sequence D:

Can be rewritten using the Bernoulli distribution:

 )1()1()|( DP
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The goodness of fit to the data.

Learning: we do not know the value of the parameter

Our learning goal: 

• Find the parameter       that fits the data D the best? 

One solution to the “best”: Maximize the likelihood

Intuition:

• more likely are the data given the model, the better is the fit

Note:  Instead of an error function that measures how bad the data 
fit the model we have a measure that tells us how well the data 
fit :
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Maximum likelihood (ML) estimate.

Maximum likelihood estimate

1N - number of heads seen 2N - number of tails seen
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Maximum likelihood (ML) estimate.
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ML Solution:

Optimize log-likelihood
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of a head and a tail?
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Maximum likelihood estimate. Example

• Assume the unknown and possibly biased coin

• Probability of the head is

• Data:

H H T T H H T H T H T T T H T H H H H T H H H H T

– Heads: 15

– Tails: 10

What is the ML estimate of the probability of head and tail ?
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Tail:
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Learning of BBN parameters. Example.

Example:
Pneumonia

CoughFeverPaleness High WBC

P(Pneumonia)

?         ?   
T         F

Pn      T      F

T        ?      ?
F        ?      ?

P(HWBC|Pneum)

P(Cough|Pneum)P(Fever|Pneum)P(Palen|Pneum)

?         ?         ?         
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal  Fev  Cou HWB  Pneu

T       T     T      T        F

T       F     F      F        F

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       F     T      F        F

F       F     F      F        F

T       T     F      F        F

T       T     T      T       T

F       T     F      T        T

T       F     F      T        F

F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC
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Estimates of parameters of BBN

• Much like multiple coin tosses

• A “smaller” learning problem corresponds to the learning of 
exactly one conditional distribution 

• Example:

• Problem: How to pick the data to learn?

)|( TPneumoniaFever P
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal  Fev  Cou HWB  Pneu

T       T     T      T        F

T       F     F      F        F

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       F     T      F        F

F       F     F      F        F

T       T     F      F        F

T       T     T      T       T

F       T     F      T        T

T       F     F      T        F

F       T     F      F        F

Pneumonia

CoughFeverPaleness High WBC

?)|(  TPneumoniaFeverP

How to estimate:
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Learning of BBN parameters. Example.

Learn:
Step 1: Select data points with Pneumonia=T

Pal  Fev  Cou HWB  Pneu
T       T     T      T        F
T       F     F      F        F
F       F     T      T        T
F       F     T      F        T
F      T      T      T       T
T       F     T      F        F
F       F     F      F        F
T       T     F      F        F
T       T     T      T       T
F       T     F      T        T
T       F     F      T        F
F       T     F      F        F

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 1: Ignore the rest

Pal  Fev  Cou HWB  Pneu

F       F     T      T        T

F       F     T      F        T

F      T      T      T       T

T       T     T      T       T

F       T     F      T        T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 2: Select values of the random variable defining the 
distribution of Fever

Pal  Fev  Cou HWB  Pneu

F      F T      T        T

F       F T      F        T

F      T T      T       T

T       T T      T       T

F       T  F      T        T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 2: Ignore the rest

Fev

F

F

T

T

T

)|( TPneumoniaFever P

Pneumonia

CoughFeverPaleness High WBC
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Learning of BBN parameters. Example.

Learn:

Step 3: Learning the ML estimate

Fev

F

F

T

T

T

)|( TPneumoniaFever P

)|( TPneumoniaFever P

0.6     0.4   
T         F

Pneumonia

CoughFeverPaleness High WBC
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Supervised learning

Data:                                     a set of n examples                                 

is an input vector of size d

is the desired output (given by a teacher)

Objective: learn the mapping 

s.t.

• Regression: Y is continuous

Example: earnings, product orders       company stock price

• Classification: Y is discrete

Example: handwritten digit in binary form        digit label

},..,,{ 21 nDDDD 
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Supervised learning

Next:

Two basic models of  

used in supervised learning

• Linear regression:

– Regression where Y is in R
• Logistic regression

– Classification with 2 classes

YXf :
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Linear regression

• Function is a linear combination of input 
components
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Linear regression

• Shorter (vector) definition of the model

– Include bias constant in the input vector

xwx T
dd xwxwxwxwf  221100)(

kwww ,, 10 - parameters (weights)
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Linear regression. Error.

• Data:

• Function:

• We would like to have

• Error function measures how much our predictions deviate 
from the desired answers

• Learning: 

We want to find the weights minimizing the error !
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Linear regression. Example

• 1 dimensional input )( 1xx

x

y

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
-10

-8

-6

-4

-2

0

2

4

6

8

10

x

y
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Linear regression. Example.

• 2 dimensional input

-3
-2

-1
0

1
2

3 -4
-2

0

2
4

-20

-15

-10

-5

0

5

10

15

20

),( 21 xxx
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Linear regression. Optimization.

• We want the weights minimizing the error

• For the optimal set of parameters, derivatives of the error with 
respect to each parameter must be 0

• Vector of derivatives:
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Linear regression. Optimization.

• For the optimal set of parameters, derivatives of the error with 
respect to each parameter must be 0

• defines a set of equations in w
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Solving linear regression

By rearranging the terms we get a system of linear equations
with d+1 unknowns
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Solving linear regression

• The optimal set of weights satisfies:

Leads to a system of linear equations (SLE) with d+1
unknowns of the form

Solutions to SLE:
• e.g.  matrix inversion (if the matrix is singular)
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Gradient descent solution

• There are other ways to solve the weight optimization problem 
in the linear regression model

• A simple technique: 
– Gradient descent

Idea:
• Adjust weights in the direction that improves the Error
• The gradient tells us what is the right direction

- a learning rate (scales the gradient changes)
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