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Density estimation

Data: p ={D,,D,,..D_}
D, =x, a vector of attribute values

Objective: try to estimate the underlying true probability
distribution over variables X , p(X) , using examples in D

true distribution n samples esfimate
p(x) D :{Dl, D21"1 Dn} p(X)

Standard (iid) assumptions: Samples
« are independent of each other
» come from the same (identical) distribution (fixed p(X))
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Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:
* Asetof random variables X={X,, X,,..., X}
* A model of the distribution over variables in X
with parameters ®

« Data D={D,,D,,., D}

Objective: find parameters © that fit the data the best

* What is the best set of parameters?
— There are various criteria one can apply here.
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Parameter estimation. Basic criteria.
» Maximum likelihood (ML)
maximize pP(D|©,¢&)

& - represents prior (background) knowledge

* Maximum a posteriori probability (MAP)
maximize P(@®|D,¢)

Selects the mode of the posterior

p(D106,5)p(O]<)
p(D[¢)

p(®]D,&) =
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Parameter estimation. Coin example.

Coin example: we have a coin that can be biased

Outcomes: two possible values -- head or tail
Data: D asequence of outcomes X; such that
*head x =1
e tail X, =0

Model: probability of ahead @
probability of atail ~ (1-6)
Objective: )
We would like to estimate the probability of a head ¢
from data
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Parameter estimation. Example.

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What would be your estimate of the probability of a head ?

0="?
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Parameter estimation. Example

» Assume the unknown and possibly biased coin

* Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What would be your choice of the probability of a head ?

Solution: use frequencies of occurrences to do the estimate

§-2_06
25
This is the maximum likelihood estimate of the parameter &
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Probability of an outcome

Data: D asequence of outcomes X; such that
* head x =1
e tail % =0
Model: probability of ahead €
probability of atail  (1-6)

Assume: we know the probability &
Probability of an outcome of a coin flip x;

P(x,|6)=6%1-0)"") <= Bernoulli distribution
— Combines the probability of a head and a tail
— So that X; isgoing to pick its correct probability

- Gives @ for x =1
— Gives (1-6) for x. =0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail % =0
Model: probability of ahead @&
probability of atail ~ (1-6)
Assume: a sequence of independent coin flips

D=HHTHTH (encoded as D=110101)
What is the probability of observing the data sequence D:
P(D|8)="

CS 1571 Intro to Al

Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
ehead X =1
e tail % =0
Model: probability of ahead @
probability of atail  (1-6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D=110101
What is the probability of observing a data sequence D:

P(D|0)=00(1-0)0(L-0)0
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
*head X =1
e tail % =0
Model: probability of ahead @
probability of atail ~ (1-6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D=110101
What is the probability of observing a data sequence D:

P(D|0)=060(1-0)0(L-0)0

likelihood of the data
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Probability of a sequence of outcomes.

Data: D asequence of outcomes X; such that
ehead X =1
e tail % =0
Model: probability of ahead @
probability of atail  (1-6)
Assume: a sequence of coin flipsD=HHTHTH
encoded as D=110101
What is the probability of observing a data sequence D:

P(D|6)=00(1-6)0(1-0)0
P(D|0)= 1‘6[ 0" (L-6)

i=1
Can be rewritten using the Bernoulli distribution:
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The goodness of fit to the data.

Learning: we do not know the value of the parameter &
Our learning goal:

 Find the parameter @ that fits the data D the best?

One solution to the “best”: Maximize the likelihood

P(D10)=]] 0" @-0)*

Intuition:
» more likely are the data given the model, the better is the fit
Note: Instead of an error function that measures how bad the data
fit the model we have a measure that tells us how well the data
fit ;
Error (D,0) =-P(D |9)
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Maximum likelihood (ML) estimate.

Likelihood of data: n
P(D|6,&)=[]e"@-0)""
Maximum likelihood estimate "

6, =argmax P(D|6,¢&)
Optimize Iog-likelihoodg (the same as maximizing likelihood)
I(D,8)=log P(D|8,&) = Iogﬁ@xi 1-0)" =

n n

Zn:xi logé +(1-x,)log(l—0) = |OI(;I92 X, + Iog(l—H)Z(l— X,)

i=1

N, - number of heads seen N, - number of tails seen
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Maximum likelihood (ML) estimate.

Optimize log-likelihood
I(D,8)=N,logé+N, log(Ll—-6)
Set derivative to zero
AD.0) N, N, _
06 ¢ (1-09)

Solving 0=

ML Solution: gML_&_ N,
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Maximum likelihood estimate. Example

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What is the ML estimate of the probability of a head and a tail?
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Maximum likelihood estimate. Example

» Assume the unknown and possibly biased coin

« Probability of the head is &

* Data:
HHTTHHTHTHTTTHTHHHHTHHHHT
— Heads: 15
— Tails: 10

What is the ML estimate of the probability of head and tail ?

Head: Oy =—== =—=0.6

Tail:  (1-0,,)= = -2 -04
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Learning of BBN parameters. Example.

P(Pneumonia)
Example:

T F
? ?

Pneumonia

P(HWBC|Pneum)

Pn| T F
T 2 2
F 2 2

P(Palen|Pneum) P(Fever|Pneum) P(Cough|Pneum)

? ? ?
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal Fev Cou HWB Pneu

Pneumonia

M7 AT 4TTT A
I DR I - R B s B s T
T4 THAA-AT+H
MA A4 4T T AT HT 4
MM A4 77— H44Tm7
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Estimates of parameters of BBN

Much like multiple coin tosses

A “smaller” learning problem corresponds to the learning of
exactly one conditional distribution

Example:
P(Fever | Pneumonia =T)

Problem: How to pick the data to learn?
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Learning of BBN parameters. Example.

Data D (different patient cases):
Pal Fev Cou HWB Pneu

Pneumonia

How to estimate:
P(Fever | Pneumonia =T) ="?

M7 AT 4TTT A
I DR I - R B s B s T
b e e D R & W B R R T T o [
MA4 A4 T AT AT o
MM A4 77— H44Tm7
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 1: Select data points with Pneumonia=T

Pal Fev Cou HWB Pneu

Pneumonia

MAT A4 AT 7T A
4Tm—H444T1ndT T TA
e e A e o R e B B e B |
M4 4T T AT T4
e TR R B s M 1 e+ M B B B B
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Learning of BBN parameters. Example.
Learn: P(Fever | Pneumonia =T)

Step 1: Ignore the rest

Pal Fev Cou HWB Pneu

Pneumonia

F F T T T
F F T F T
F T T T T
T T T T T
F T F T T
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)

Step 2: Select values of the random variable defining the
distribution of Fever

Pneumonia

Pal Fev Cou HWB Pneu

F F T T T
F F T F T
F T T T T @
T T T T T
F T F T T
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 2: Ignore the rest

Fev

Pneumonia

44 4T
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Learning of BBN parameters. Example.

Learn: P(Fever | Pneumonia =T)
Step 3: Learning the ML estimate

Fev

44 4T

P(Fever | Pneumonia =T)

T F
0.6 0.4
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Supervised learning

Data: D={D,,D,,..D,} asetofnexamples
D, =<X,,y; >
X; = (X1, X ,"""X;4) isan input vector of size d
Y; isthe desired output (given by a teacher)
Objective: learn the mapping f : X =Y
st. y, = f(x;) forall i=1,.,n

* Regression: Y is continuous

Example: earnings, product orders — company stock price
» Classification: Y is discrete

Example: handwritten digit in binary form — digit label
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Supervised learning

Next:
Two basic modelsof f: X Y
used in supervised learning

* Linear regression:

— Regression where Y isin
* Logistic regression

— Classification with 2 classes
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Linear regression

e Function f:X —Y isa linear combination of input
components

d
f(X) =W, + WX, + W, X, +... Wy Xy =W, +ijxj
j=1

Wy, W,... W, - parameters (weights)

Biasterm —— 1

Input vector <
X . Wy
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Linear regression

» Shorter (vector) definition of the model

— Include bias constant in the input vector
X = (L X, Xy, Xg)

f(X) = WXy + WX, + W, X, +... WX, =W'X

Wy, Wy,... W, - parameters (weights)

(1
Xl
_
Inputvector< X2
X . Wy
X
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Linear regression. Error.

Data: D, =<X,,y; >
Function: X; = f(x;)
We would like to have Y; = f(x;) forall i=1.,n

Error function measures how much our predictions deviate
from the desired answers

1
Mean-squared error J, = o

D (yi= ()
i=1,.n
Learning:
We want to find the weights minimizing the error !
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Linear regression. Example

« 1 dimensional input X =(X,)

CS 1571 Intro to Al
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Linear regression. Example.

« 2dimensional input X = (X, X,)

CS 1571 Intro to Al

Linear regression. Optimization.

» We want the weights minimizing the error

32T T - ) = S -wI)?

i=1,..n i=1,..n

» For the optimal set of parameters, derivatives of the error with
respect to each parameter must be 0

0 2
ow, Ja(w) = _szll (Vi = WoX; o = WyXi = =Wy X 4) % ; =0
e Vector of derivatives:

grad , (3, (W) = V., (3, (W) = =23 (g, ~wx)x, = 0

CS 1571 Intro to Al
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Linear regression. Optimization.

» For the optimal set of parameters, derivatives of the error with
respect to each parameter must be 0
.
n i=1,..n i=1,..n
*grad , (J,(w)) =0 defines a set of equations in w
0 23 & (2) (K)
— 3, (W) ===y = (Wo +Wx® +wx® o+ w xH)] =0
ow, ns
0 2

n
T (W) ===y = (W + wWx@ + w,x@ 4w, x8)x® =0
ow, Nz

Dy - F(x))? = 1 D = I, +wx® +wx@ 4w x W)

i\]n(w) = —EZ[yi — Wy + W x® +w,x@ + L w x)]xP =0
aWJ- n 5=
CS 1571 Intro to Al
Solving linear regression
i\] (W)——Ezn:(y — WX g =W, X, —...— W, X )X . =0
6Wj n n = i 07%,0 IR d™id i,]

By rearranging the terms we get a system of linear equations
ith d+
with d+1 unknowns Aw=b

n n n n n
Wo X X ol W D XLt W DX L+ Wy Y X 1=yl
i=1 i=1 i=1 i=1 i=1
n n n n n
WOZXi,OXi,l+\szi,1xi,1+"'+wjzxi,jxi,1+"'+Wd zxi,de :Zinu
i=1 i=1 i=1 i=1 i=1
o0

[ ]
n n n n n
WOZXLOX” +WlZXinXiJ- +...+WjZXiVinyj +...+WdZXinXiyj :Zyixiyj
i=1 i=1l i=1 i=1 i=1
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Solving linear regression

» The optimal set of weights satisfies:
VL) = -2 (g - wTx)x, = 0
i=1

Leads to a system of linear equations (SLE) with d+1

unknowns of the form
- — Aw=Db —_—

n n n n
Wy D X 0% WD XiX AW D XX W D XX = D Y
i1 i1 i i1 i1

i=1

Solutions to SLE:
* e.0. matrix inversion (if the matrix is singular)

w=A"Db
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Gradient descent solution

» There are other ways to solve the weight optimization problem
in the linear regression model

3, = Emor (w) == % (v, - f(x,,w)’

» A simple technique:
— Gradient descent
Idea:
» Adjust weights in the direction that improves the Error
* The gradient tells us what is the right direction

W<« wW—-a V  Error,(w)

a >0 - alearning rate (scales the gradient changes)
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