CS 1571 Introduction to AI

Lecture 24

- Density estimation
 - Linear regression

Milos Hauskrecht

milos@cs.pitt.edu
5329 Sennott Square

Density estimation

Data: $\quad D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$
$D_{i}=\mathbf{x}_{i} \quad$ a vector of attribute values
Objective: try to estimate the underlying true probability
distribution over variables $\mathbf{X}, p(\mathbf{X})$, using examples in D

Standard (iid) assumptions: Samples

- are independent of each other
- come from the same (identical) distribution (fixed $p(\mathbf{X})$)

Learning via parameter estimation

In this lecture we consider parametric density estimation
Basic settings:

- A set of random variables $\mathbf{X}=\left\{X_{1}, X_{2}, \ldots, X_{d}\right\}$
- A model of the distribution over variables in \boldsymbol{X} with parameters Θ
- Data $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\}$

Objective: find parameters $\hat{\Theta}$ that fit the data the best

- What is the best set of parameters?
- There are various criteria one can apply here.

Parameter estimation. Basic criteria.

- Maximum likelihood (ML)
maximize $p(D \mid \Theta, \xi)$ ξ - represents prior (background) knowledge
- Maximum a posteriori probability (MAP)
maximize $\quad p(\Theta \mid D, \xi)$
Selects the mode of the posterior

$$
p(\Theta \mid D, \xi)=\frac{p(D \mid \Theta, \xi) p(\Theta \mid \xi)}{p(D \mid \xi)}
$$

Parameter estimation. Coin example.

Coin example: we have a coin that can be biased
Outcomes: two possible values -- head or tail
Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Objective:
We would like to estimate the probability of a head $\hat{\theta}$ from data

Parameter estimation. Example.

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your estimate of the probability of a head ?

$$
\tilde{\theta}=?
$$

Parameter estimation. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What would be your choice of the probability of a head ?
Solution: use frequencies of occurrences to do the estimate

$$
\tilde{\theta}=\frac{15}{25}=0.6
$$

This is the maximum likelihood estimate of the parameter θ

Probability of an outcome

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$

Assume: we know the probability θ
Probability of an outcome of a coin flip x_{i}

$$
P\left(x_{i} \mid \theta\right)=\theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)} \longleftarrow \quad \text { Bernoulli distribution }
$$

- Combines the probability of a head and a tail
- So that x_{i} is going to pick its correct probability
- Gives θ for $x_{i}=1$
- Gives (1- θ) for $x_{i}=0$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of independent coin flips $D=$ H H T H T H \quad (encoded as $D=110101$)
What is the probability of observing the data sequence \mathbf{D} :

$$
P(D \mid \theta)=?
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $\mathbf{D}=110101$

What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail $(1-\theta)$
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $\mathbf{D = 1 1 0 1 0 1}$
What is the probability of observing a data sequence \mathbf{D} :

$$
P(D \mid \underset{\mathbf{k}}{\theta})=\theta \theta(1-\theta) \theta(1-\theta) \theta
$$

likelihood of the data

Probability of a sequence of outcomes.

Data: D a sequence of outcomes x_{i} such that

- head $\quad x_{i}=1$
- tail $\quad x_{i}=0$

Model: probability of a head θ probability of a tail (1- θ)
Assume: a sequence of coin flips $D=$ H H T H T H encoded as $\mathbf{D}=110101$

What is the probability of observing a data sequence \mathbf{D} :

$$
\begin{aligned}
& P(D \mid \theta)=\theta \theta(1-\theta) \theta(1-\theta) \theta \\
& P(D \mid \theta)=\prod_{i=1}^{6} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
\end{aligned}
$$

Can be rewritten using the Bernoulli distribution:

The goodness of fit to the data.

Learning: we do not know the value of the parameter θ
Our learning goal:

- Find the parameter θ that fits the data D the best?

One solution to the "best": Maximize the likelihood

$$
P(D \mid \theta)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Intuition:

- more likely are the data given the model, the better is the fit

Note: Instead of an error function that measures how bad the data fit the model we have a measure that tells us how well the data fit :

$$
\text { Error }(D, \theta)=-P(D \mid \theta)
$$

Maximum likelihood (ML) estimate.

Likelihood of data:

$$
P(D \mid \theta, \xi)=\prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}
$$

Maximum likelihood estimate

$$
\theta_{M L}=\arg \max _{\theta} P(D \mid \theta, \xi)
$$

Optimize log-likelihood (the same as maximizing likelihood)

$$
\begin{aligned}
& l(D, \theta)=\log P(D \mid \theta, \xi)=\log \prod_{i=1}^{n} \theta^{x_{i}}(1-\theta)^{\left(1-x_{i}\right)}= \\
& \sum_{i=1}^{n} x_{i} \log \theta+\left(1-x_{i}\right) \log (1-\theta)=\log \theta \sum_{i=1}^{n} x_{i}+\log (1-\theta) \sum_{i=1}^{n}\left(1-x_{i}\right)
\end{aligned}
$$

Maximum likelihood (ML) estimate.

Optimize log-likelihood

$$
l(D, \theta)=N_{1} \log \theta+N_{2} \log (1-\theta)
$$

Set derivative to zero

$$
\frac{\partial l(D, \theta)}{\partial \theta}=\frac{N_{1}}{\theta}-\frac{N_{2}}{(1-\theta)}=0
$$

Solving

$$
\theta=\frac{N_{1}}{N_{1}+N_{2}}
$$

ML Solution: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}$

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of a head and a tail?

Maximum likelihood estimate. Example

- Assume the unknown and possibly biased coin
- Probability of the head is θ
- Data:

H H T THHTHTHTTTHTHHHHTHHHHT

- Heads: 15
- Tails: 10

What is the ML estimate of the probability of head and tail ?

Head: $\quad \theta_{M L}=\frac{N_{1}}{N}=\frac{N_{1}}{N_{1}+N_{2}}=\frac{15}{25}=0.6$
Tail: $\quad\left(1-\theta_{M L}\right)=\frac{N_{2}}{N}=\frac{N_{2}}{N_{1}+N_{2}}=\frac{10}{25}=0.4$

Learning of BBN parameters. Example.

Learning of BBN parameters. Example.

Data D (different patient cases):
Pal Fev Cou HWB Pneu
$\mathbf{T} \quad \mathbf{T} \quad \mathbf{T} \quad \mathbf{T} \quad \mathbf{F}$

\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

\mathbf{F}	F	\mathbf{T}	\mathbf{T}	\mathbf{T}

F \quad| \mathbf{F} | \mathbf{T} | \mathbf{F} | \mathbf{T} |
| :--- | :--- | :--- | :--- |

\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}

\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}

\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}

\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}

\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}

\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Estimates of parameters of BBN

- Much like multiple coin tosses
- A "smaller" learning problem corresponds to the learning of exactly one conditional distribution
- Example:

$$
\mathbf{P}(\text { Fever } \mid \text { Pneumonia }=T)
$$

- Problem: How to pick the data to learn?

Learning of BBN parameters. Example.

Data D (different patient cases):
Pal Fev Cou HWB Pneu

\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 1: Select data points with Pneumonia=T

Pal Fev Cou HWB Pneu

\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{F}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}
\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}
\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}	\mathbf{T}
\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}
\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{F}	\mathbf{F}

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 1: Ignore the rest

Pal Fev Cou HWB Pneu

\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

$\begin{array}{lllll}\mathbf{F} & \mathbf{F} & \mathbf{T} & \mathbf{F} & \mathbf{T}\end{array}$
$\begin{array}{lllll}\mathbf{F} & \mathbf{T} & \mathbf{T} & \mathbf{T} & \mathbf{T}\end{array}$
$\begin{array}{lllll}\mathbf{T} & \mathbf{T} & \mathbf{T} & \mathbf{T} & \mathbf{T}\end{array}$
F $\quad \mathbf{T} \quad \mathbf{F} \quad \mathbf{T} \quad \mathbf{T}$

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 2: Select values of the random variable defining the distribution of Fever

Pal Fev Cou HWB Pneu

\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}

\mathbf{F}	\mathbf{F}	\mathbf{T}	\mathbf{F}	\mathbf{T}

\mathbf{F}	\mathbf{T}	\mathbf{T}	\mathbf{T}	\mathbf{T}

$\mathbf{T} \quad \mathbf{T} \quad \mathbf{T} \quad \mathbf{T} \quad \mathbf{T}$

F $\begin{array}{llll}\mathbf{T} & \mathbf{F} & \mathbf{T} & \mathbf{T}\end{array}$

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 2: Ignore the rest

Fev
F

F

T
T
T

Learning of BBN parameters. Example.

Learn: $\quad \mathbf{P}($ Fever \mid Pneumonia $=T)$
Step 3: Learning the ML estimate

Fev
F
F
T
T
T

Supervised learning

Data: $D=\left\{D_{1}, D_{2}, . ., D_{n}\right\} \quad$ a set of \boldsymbol{n} examples

$$
D_{i}=<\mathbf{x}_{i}, y_{i}>
$$

$\mathbf{x}_{i}=\left(x_{i, 1}, x_{i, 2}, \cdots x_{i, d}\right)$ is an input vector of size d
y_{i} is the desired output (given by a teacher)
Objective: learn the mapping $f: X \rightarrow Y$
s.t. $y_{i} \approx f\left(\mathbf{x}_{i}\right)$ for all $i=1, . ., n$

- Regression: Y is continuous

Example: earnings, product orders \rightarrow company stock price

- Classification: Y is discrete

Example: handwritten digit in binary form \rightarrow digit label

Supervised learning

Next:

Two basic models of $\quad f: X \rightarrow Y$ used in supervised learning

- Linear regression:
- Regression where \mathbf{Y} is in \mathfrak{R}
- Logistic regression
- Classification with 2 classes

Linear regression

- Function $f: X \rightarrow Y$ is a linear combination of input components

$$
f(\mathbf{x})=w_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots w_{d} x_{d}=w_{0}+\sum_{j=1}^{d} w_{j} x_{j}
$$

$$
w_{0}, w_{1}, \ldots w_{k} \text { - parameters (weights) }
$$

Bias term $\longrightarrow 1$

CS 1571 Intro to AI

Linear regression

- Shorter (vector) definition of the model
- Include bias constant in the input vector

$$
\mathbf{x}=\left(1, x_{1}, x_{2}, \cdots x_{d}\right)
$$

$$
f(\mathbf{x})=w_{0} x_{0}+w_{1} x_{1}+w_{2} x_{2}+\ldots w_{d} x_{d}=\mathbf{w}^{T} \mathbf{x}
$$

$w_{0}, w_{1}, \ldots w_{k}$ - parameters (weights)

Linear regression. Error.

- Data: $D_{i}=<\mathbf{x}_{i}, y_{i}>$
- Function: $\mathbf{x}_{i} \rightarrow f\left(\mathbf{x}_{i}\right)$
- We would like to have $y_{i} \approx f\left(\mathbf{x}_{i}\right)$ for all $i=1, . ., n$
- Error function measures how much our predictions deviate from the desired answers

Mean-squared error $J_{n}=\frac{1}{n} \sum_{i=1, . . n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}$

- Learning:

We want to find the weights minimizing the error !

Linear regression. Example

- 1 dimensional input

$$
\mathbf{x}=\left(x_{1}\right)
$$

Linear regression. Example.

- 2 dimensional input $\mathbf{x}=\left(x_{1}, x_{2}\right)$

Linear regression. Optimization.

- We want the weights minimizing the error

$$
J_{n}=\frac{1}{n} \sum_{i=1, \ldots n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}=\frac{1}{n} \sum_{i=1, ., n}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right)^{2}
$$

- For the optimal set of parameters, derivatives of the error with respect to each parameter must be 0

$$
\frac{\partial}{\partial w_{j}} J_{n}(\mathbf{w})=-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0} x_{i, 0}-w_{1} x_{i, 1}-\ldots-w_{d} x_{i, d}\right) x_{i, j}=0
$$

- Vector of derivatives:
$\operatorname{grad}_{\mathbf{w}}\left(J_{n}(\mathbf{w})\right)=\nabla_{\mathbf{w}}\left(J_{n}(\mathbf{w})\right)=-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}=\overline{\mathbf{0}}$

Linear regression. Optimization.

- For the optimal set of parameters, derivatives of the error with respect to each parameter must be 0
$J_{n}=\frac{1}{n} \sum_{i=1, . . n}\left(y_{i}-f\left(\mathbf{x}_{i}\right)\right)^{2}=\frac{1}{n} \sum_{i=1, ., n}\left(y_{i}-\left[w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots w_{k} x^{(k)}\right]\right)^{2}$
$\cdot \operatorname{grad}_{w}\left(J_{n}(\mathbf{w})\right)=\overline{\mathbf{0}} \quad$ defines a set of equations in \mathbf{w}

$$
\begin{gathered}
\frac{\partial}{\partial w_{0}} J_{n}(w)=-\frac{2}{n} \sum_{i=1}^{n}\left[y_{i}-\left(w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots w_{k} x^{(k)}\right)\right]=0 \\
\frac{\partial}{\partial w_{1}} J_{n}(w)=-\frac{2}{n} \sum_{i=1}^{n}\left[y_{i}-\left(w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots w_{k} x^{(k)}\right)\right] x^{(1)}=0 \\
\ldots \\
\frac{\partial}{\partial w_{j}} J_{n}(w)=-\frac{2}{n} \sum_{i=1}^{n}\left[y_{i}-\left(w_{0}+w_{1} x^{(1)}+w_{2} x^{(2)}+\ldots w_{k} x^{(k)}\right)\right] x^{(j)}=0 \\
\ldots
\end{gathered}
$$

Solving linear regression

$$
\frac{\partial}{\partial w_{j}} J_{n}(\mathbf{w})=-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-w_{0} x_{i, 0}-w_{1} x_{i, 1}-\ldots-w_{d} x_{i, d}\right) x_{i, j}=0
$$

By rearranging the terms we get a system of linear equations with $d+1$ unknowns

$$
\mathbf{A w}=\mathbf{b}
$$

$$
w_{0} \sum_{i=1}^{n} x_{i, 0} 1+w_{1} \sum_{i=1}^{n} x_{i, 1} 1+\ldots+w_{j} \sum_{i=1}^{n} x_{i, j} 1+\ldots+w_{d} \sum_{i=1}^{n} x_{i, d} 1=\sum_{i=1}^{n} y_{i} 1
$$

$$
w_{0} \sum_{i=1}^{n-1} x_{i, 0} x_{i, 1}+w_{1} \sum_{i=1}^{n-1} x_{i, 1} x_{i, 1}+\ldots+w_{j} \sum_{i=1}^{n-1} x_{i, j} x_{i, 1}+\ldots+w_{d} \sum_{i=1}^{n-1} x_{i, d} x_{i, 1}=\sum_{i=1}^{n} y_{i} x_{i, 1}
$$

$$
w_{0} \sum_{i=1}^{n} x_{i, 0} x_{i, j}+w_{1} \sum_{i=1}^{n} x_{i, 1} x_{i, j}+\ldots+w_{j} \sum_{i=1}^{n} x_{i, j} x_{i, j}+\ldots+w_{d} \sum_{i=1}^{n} x_{i, d} x_{i, j}=\sum_{i=1}^{n} y_{i} x_{i, j}
$$

Solving linear regression

- The optimal set of weights satisfies:

$$
\nabla_{\mathbf{w}}\left(J_{n}(\mathbf{w})\right)=-\frac{2}{n} \sum_{i=1}^{n}\left(y_{i}-\mathbf{w}^{T} \mathbf{x}_{i}\right) \mathbf{x}_{i}=\overline{\mathbf{0}}
$$

Leads to a system of linear equations (SLE) with $d+1$ unknowns of the form

$$
\mathbf{A w}=\mathbf{b}
$$

$w_{0} \overline{\sum_{i=1}^{n} x_{i, 0} x_{i, j}+w_{1} \sum_{i=1}^{n} x_{i, 1} x_{i, j}+\ldots+w_{j} \sum_{i=1}^{n} x_{i, j} x_{i, j}+\ldots+w_{d} \sum_{i=1}^{n} x_{i, d} x_{i, j}=\sum_{i=1}^{n} y_{i} x_{i, j}}$

Solutions to SLE:

- e.g. matrix inversion (if the matrix is singular)

$$
\mathbf{w}=\mathbf{A}^{-1} \mathbf{b}
$$

Gradient descent solution

- There are other ways to solve the weight optimization problem in the linear regression model

$$
J_{n}=\operatorname{Error}(\mathbf{w})=\frac{1}{n} \sum_{i=1, . . n}\left(y_{i}-f\left(\mathbf{x}_{i}, \mathbf{w}\right)\right)^{2}
$$

- A simple technique:
- Gradient descent

Idea:

- Adjust weights in the direction that improves the Error
- The gradient tells us what is the right direction

$$
\mathbf{w} \leftarrow \mathbf{w}-\alpha \nabla_{\mathbf{w}} \operatorname{Error}_{i}(\mathbf{w})
$$

$\alpha>0-$ a learning rate (scales the gradient changes)

